
21/04/2022, 21:34 The Heart of Forth

www.figuk.plus.com/build/heart.htm 1/6

BACK

On This Page

The Virtual Chip

The Inner Interpreter

Run-Time Codes for

Defining Words

Literals and Run-Time

Words for Control

Structures

The Heart of Forth
Forth can be seen as assembly language for a processor which has two stacks,
the data stack and the return stack. Many processors have only one hardware
stack, so the other one has to be simulated in software.

Comments, queries and suggestions
gratefully received

Native Code (aka Subroutine Threading)

If the hardware return stack is used, then there need be no difference
between primitive
and secondary definitions - it is all native machine
code. A Forth secondary definition

 : EASYAS A B C ;

compiles to CALL A CALL B CALL C no matter what parameters are
required by A B or C.
Each word takes its own parameters from the data
stack, and places its results there. It is
up to the programmer, or the
calling word, to ensure that the correct parameters are
provided.

For speed, the bodies of short primitive definitions can be compiled
in-line instead of
compiling a call. There are many other optimisations
that can be made - of increasing
complexity and decreasing utility - but
that is a subject I am not qualified to discuss. This
method of implementation
is increasingly popular, especially where Forths are written in C.

The Classic Approach - Threaded Code

Traditionally a secondary definition such as EASYAS contains a
code
field and a data field
containing a list of execution tokens
(xts). Each xt in the list is the address of the code field
of one of the
words in the definition. The advantages are compactness and simplicity.
It can
also be faster than unoptimised native code. There are two main
varieties:

Direct Threaded
Each code field contains a machine code fragment. So, in the case of a
primitive
(machine code) definition, the xt is the address of the machine
code itself

Indirect Threaded
Each code field contains a pointer to a native code fragment. With indirect
code,
each definition, of whatever type, has a code field exactly one cell
wide, and a data
field. In the case of a primitive definition, the data
field contains its machine code,
and the code field is simply a pointer
to it. All types of word have the same format:
the code field defines what
the word does - the data field what it does it with. A
word's xt is the
address of its code field.

Direct threaded code is usually faster than indirect threaded, except on
chips such as the
Pentium, which dislike mixing code and data. For these
threading mechanisms to work,
each native code fragment must end in an
instruction (commonly called NEXT) which
advances execution to the next
fragment.

The Virtual Chip

I am describing operations such as NEXT by use of a pseudo-assembler which
uses
Forthlike postscript notation. This allows me to show what is happening
without reference to
extra hypothetical registers. I am using the following
conventions:

The data stack, the return stack, and xts all have the same width -
one
cell, typically 16 or 32 bits. (This is not strictly necessary -
so
long as an xt will fit on both the data and return stacks, the data

http://www.figuk.plus.com/byof.htm
mailto:webmaster@figuk.plus.com

21/04/2022, 21:34 The Heart of Forth

www.figuk.plus.com/build/heart.htm 2/6

stack may be wider to allow it to address more space - but it
makes for
a simpler model)
register means the value held in that register
[xxxx] means the value held at address xxxx
xxxx TO register means store xxxx in the register
xxxx +TO register means increment by that amount
xxxx PUSH register the register acts as a stack, push xxx
onto it
POP register means the value popped from the stack

The Registers

Here are the registers of the virtual chip, listed in order of importance
as regards speed:

PSP The Parameter Stack Pointer
Gives access to the data stack. You need a minimum of 32 cells for the
stack

IP The Instruction Pointer
Points to the next exection token to be executed

RSP The Return Stack Pointer
You need a minimum of 24 cells for the return stack. If you can, allot
at least 64 cells
for each stack and use the fastest memory you have.

W The Working Register
Provides an address from which the data field of the currently executing
word can be
found. A primitive may overwrite W with impunity, but should
preserve all the other
virtual registers. My pseudocode assumes the address
held in W to be the current
xt, and that the data field immediately follows
the code field, but neither of these are
requirements. I use the pseudo-op
DATA to hide the details how the data field
address is obtained.

TOS Top of Stack Cache
If you can spare a register (hereafter called TOS), cacheing the top value
on the
stack makes many primitive definitions faster. Using TOS can save
a PUSH PSP
and a POP PSP on definitions that use the stack but leave it
balanced, at the
expense of an extra register move when adding items. It's
generally not worthwhile
trying to cache more than one stack item. For
clarity, I will not be using TOS in my
pseudocode of the inner interpreter.

UP The User Pointer
Only needed on multi-tasking Forths, it holds the base address for variables
local to
each task

Only a fraction of the available native opcodes are needed to build a Forth
system, and it
is a simple task, once you have Forth, to write an assembler
that will implement it for
another system.

The best threading method and register assignments for a particular
system can only be
decided by coding some primitives and timing them. The
most frequently used ones are:

NEXT, ENTER, EXIT, DOVAR, DOCON, LIT,& @, !, +, BRANCH, ?BRANCH, SWAP, >R, R>.

For a more technical approach, with examples for several chips, see Brad
Rodriguez's
Moving Forth.
The Forth model discussed there is based to a large extent on his
CamelForth.
Brad also recommends benchmarking EXECUTE, OVER, ROT, 0=, +! and
DODOES.

The Inner Interpreter

NEXT ENTER EXECUTE EXIT

NEXT
hands control from one machine code fragment to the next. Because it is
used so
often, it is vital to optimise it for speed, so it is usually compiled
in-line, rather than as
a jump to a central routine.

ENTER

http://www.zetetics.com/bj/papers/
http://www.figuk.plus.com/4thres/systems.htm#CamelForth

21/04/2022, 21:34 The Heart of Forth

www.figuk.plus.com/build/heart.htm 3/6

the machine code executed by the xt of a secondary definition (compiled
by :
"colon" et al.) ENTER, like NEXT, is a code fragment, not a
primitive

EXECUTE
Forth primitive. Executes the xt on the parameter stack, which can belong
to any
type of Forth word. Because EXECUTE finishes with a JUMP, it does
not need
NEXT, which is supplied by whatever it executes.

EXIT
Forth primitive. Returns from a secondary definition. It is compiled by
; "semicolon"

Indirect Code Version

Assuming the data field directly follows the code field, DATA is W
CELL +

NEXT [IP] TO W CELL +TO IP (note the order!!) [W] JUMP

EXECUTE POP PSP TO W [W] JUMP

ENTER IP PUSH RSP DATA TO IP NEXT

EXIT POP RSP TO IP NEXT

Note how both NEXT and EXECUTE need to update W so the next word to execute
can
find the right data field address if it needs to.

Direct Threaded Versions

There are two different flavours of direct threaded code: in one the code
field of a
secondary definition contains JUMP ENTER and in the
other it contains CALL ENTER.

JUMP version

As with indirect code, W holds the code field address. DATA now has to
increment past
the width of the opcode JUMP xxxx to find the data field
address. The only other real
difference to the indirect threaded interpreter
is that NEXT and EXECUTE now jump
directly to W, not to the address pointed
to by it.

NEXT [IP] TO W CELL +TO IP W JUMP

EXECUTE POP PSP TO W W JUMP

ENTER IP PUSH RSP DATA TO IP NEXT

EXIT POP RSP TO IP NEXT

CALL Version

With the direct threaded version using CALL ENTER , DATA can pop the required
address from the hardware stack (where it has be pushed by the CALL), and
does not need
to reference W at all. Therefore, NEXT and EXECUTE do not
need to update it either.
Whichever method is chosen, it is vital to be
consistent. DATA should work for any word
that needs its data field address,
whether that word has been invoked by NEXT or
EXECUTE. So if DATA depends
on the action of CALL, then every class of word that
requires access
to its own data should have a code field of the form CALL xxxx. ENTER
and
EXIT are unchanged, except of course that they use the new NEXT.

NEXT [IP] CELL +TO IP JUMP

(this may be a single opcode on some chips)

EXECUTE POP PSP JUMP (likewise)

Native Code Version

21/04/2022, 21:34 The Heart of Forth

www.figuk.plus.com/build/heart.htm 4/6

Strictly speaking, native code Forths do not have an inner interpreter;
it is all machine
code, and NEXT is superfluous to requirements. However,
a distinction may be made
between "primitives" (compiled in-line) and "secondaries"
for which a CALL is compiled.
Seen this way, IP is the hardware program
counter, and RSP the hardware call stack, and
the "inner interpreter" looks
like this:

ENTER Hardware CALL.

(Compiled in-line in the calling definition - there is no code field as such in a colon
definition)

EXIT Hardware Return from Subroutine

NEXT Not needed except to end a "secondary", where it is identical to EXIT

Although colon definitions have no code and data field, the terms do make
sense for other
"secondary" words, so EXECUTE and DATA are the same as
for the CALL version of direct
threaded code.

Run-Time Codes for Defining Words

DOCON DOVAR DOUSER DODOES>

Like ENTER, these are not Forth primitives, but the machine code that defines
the actions
of different types of Forth word.

DOCON [DATA] PUSH PSP NEXT

DOCON is compiled by CONSTANT - the data field holds constant's value.
NB Some
Forths may compile constants as literals. The values of
these constants cannot be changed
once they are defined.

DOVAR DATA PUSH PSP NEXT

DOVAR is compiled by CREATE and VARIABLE. Again, some Forths may compile
the
address of a variable as a literal.

DOUSER [DATA] UP + PUSH PSP NEXT

DOUSER is compiled by USER Variables of which every task in a multi-tasking
Forth has
its own copies, in an area ofmemory pointed to by UP. The data
field of a USER holds its
offset from the start of that area.

DODOES> IP PUSH RSP

 POP hardware call stack TO IP

 DATA PUSH PSP NEXT

DODOES> is perhaps the most subtle piece of code in Forth, associating
a data field with
an already defined high-level action. This is achieved
by prefixing the body of the high-level
definition with the native code
fragment CALL DODOES> instead of the normal code field
for a colon definition.
The 'child' word (to which the data field belongs) invokes that instance
of CALL DODOES just as it would any other machine code fragment.

Thus,
if CALL DODOES is at address xxxx, the code field of the child word contains
xxxx
if it is indirect threaded, CALL xxxx if it is native code, and either
CALL xxxx or JUMP xxxx
if it is direct threaded.

The first part of DODOES> is analogous to ENTER, with the address of
the thread
popped from the hardware call stack, where it had been pushed
by the call to DODOES>.
The high-level code expects the data field address
to be on the parameter stack, so that is

21/04/2022, 21:34 The Heart of Forth

www.figuk.plus.com/build/heart.htm 5/6

pushed before NEXT allows execution
to start. Since the address pushed by the extra call
has been removed by
that stage, the normal DATA finds the correct address for the child's
data
field. Note that the pseudocode assumes that the hardware stack pointer
is not one of
the virtual registers. If it is, the code will need
to be modified. With native code, where the
RSP is the hardware call stack,
CALL DODOES can simply be replaced by the sequence
DATA PUSH PSP.

Literals and Run-Time Words for Control Structures

LIT BRANCH ?BRANCH (DO) (?DO) (+LOOP) (LOOP) (LEAVE)

The compiler for classic threaded code is absurdly simple. All it does
is add the xt of each
word it finds to the current definition. Any more
complex action is dealt with by the fact that
some words it encounters
are not compiled in this way, but executed instead. For example,
; compiles EXIT and then turns off the compiler. Such words are called immediate
words.
The following run-time words are compiled by the immediate
words which build literals and
control structures. The immediate words
lay down the structure - the run-time words define
what to do with it.

Common code fragments

branch [IP] TO IP (jump to in-line address)

(or [IP] +TO IP if in-line address is relative)

skip CELL +TO IP (skip in-line address)

NB Native code may in-line runtime words. In such cases IP will
not point directly to the in-
line value, and adjustment has to be
made for the size of the code itself

LIT [IP] PUSH PSP skip NEXT

BRANCH branch NEXT

?BRANCH POP PSP 0= IF skip ELSE branch THEN NEXT

LIT is compiled by literals, to push the in-line value that follows it
onto the stack. BRANCH
is compiled by the control structure words AGAIN,
ELSE and REPEAT - ?BRANCH by IF
and UNTIL.

Counted Loops

These have got a little bit baroque in Standard Forth, having to support
the following
features:

DO...LOOP can count all the numbers from zero up to the
unsigned maximum
possible in one cell, therefore 0 0 DO ...
iterates max+1 times, and ?DO
is needed instead of DO for a loop
that iterates zero times.
DO or ?DO work with both LOOP and +LOOP, as do I and J
LEAVE exits the loop immediately after the next LOOP or +LOOP
+LOOP can take either positive or negative increments. In fact, it
can
vary between positive and negative in the one loop.
LEAVE exits the loop immediately after the next LOOP or +LOOP

All of this means that testing for termination is tricky. The test is for
crossing the boundary
between the limit and the limit-1 from either
direction, so negative-going +LOOPs execute
one more time than you
might expect. The test is made by offsetting the loop counter by
HALFMAX
(cell with only the high bit set) - limit, so that overflow is signalled
(the sign of the
high bit changes) when it terminates.

21/04/2022, 21:34 The Heart of Forth

www.figuk.plus.com/build/heart.htm 6/6

The behaviour of ?DO and LEAVE has led to some strange implementations.
For
example, F83 DO pushes the exit address of the loop on the return stack
so that it can be
picked up and used by LEAVE, and it does so whether that
particular loop has a LEAVE or
not. This version is more rational. LEAVE
compiles its own exit address and doesn't mess
with the return stack.

Pseudocode Assumptions

The return stack grows downwards, so [RSP] is the top item, [RSP 1 CELLS
+] the next,
and so on. It does not matter which way it grows - use whichever
is more convenient. You
will soon see that it is useful for RSP and PSP
to have indexing capability!.

Common Code Fragments

setloop (- start value in W, limit value on stack)

 HALFMAX POP PSP - PUSH RSP (amount of offset)

 W [RSP] + PUSH RSP (adjusted start value)

unloop (- remove loop parameters) 2 CELLS +TO RSP

The Runtime Words

(DO) PSP POP TO W setloop NEXT

(?DO) POP PSP TO W

 [PSP] W = IF (does start=limit?)

 POP PSP TO W branch (do not enter loop)

 ELSE setloop skip THEN

 NEXT

(LOOP) 1 +TO [RSP] overflow? IF

 (end of count)

 unloop skip ELSE branch THEN

 NEXT

(+LOOP) POP PSP +TO [RSP] overflow? IF (end of count)

 unloop skip ELSE branch THEN

 NEXT

(LEAVE) unloop branch NEXT

The corresponding immediate words ?DO, LOOP, +LOOP and LEAVE all compile
a
branch address. ?DO and LEAVE branch past the end of the loop; LOOP and
+LOOP
branch back to the start.

