
6/30/2018 Flex - a scanner generator - Start conditions

http://dinosaur.compilertools.net/flex/flex_11.html 1/5

Go to the first, previous, next, last section, table of contents.

Start conditions

flex provides a mechanism for conditionally activating rules. Any rule whose pattern is prefixed with "
<sc>" will only be active when the scanner is in the start condition named "sc". For example,

<STRING>[^"]* { /* eat up the string body ... */

 ...

 }

will be active only when the scanner is in the "STRING" start condition, and

<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */

 ...

 }

will be active only when the current start condition is either "INITIAL", "STRING", or "QUOTE".

Start conditions are declared in the definitions (first) section of the input using unindented lines beginning
with either `%s' or `%x' followed by a list of names. The former declares inclusive start conditions, the latter
exclusive start conditions. A start condition is activated using the BEGIN action. Until the next BEGIN action is
executed, rules with the given start condition will be active and rules with other start conditions will be
inactive. If the start condition is inclusive, then rules with no start conditions at all will also be active. If it is
exclusive, then only rules qualified with the start condition will be active. A set of rules contingent on the
same exclusive start condition describe a scanner which is independent of any of the other rules in the flex
input. Because of this, exclusive start conditions make it easy to specify "mini-scanners" which scan portions
of the input that are syntactically different from the rest (e.g., comments).

If the distinction between inclusive and exclusive start conditions is still a little vague, here's a simple
example illustrating the connection between the two. The set of rules:

%s example

%%

<example>foo do_something();

bar something_else();

is equivalent to

%x example

%%

<example>foo do_something();

<INITIAL,example>bar something_else();

Without the `<INITIAL,example>' qualifier, the `bar' pattern in the second example wouldn't be active
(i.e., couldn't match) when in start condition `example'. If we just used `<example>' to qualify `bar',
though, then it would only be active in `example' and not in INITIAL, while in the first example it's active in
both, because in the first example the `example' starting condition is an inclusive (`%s') start condition.

Also note that the special start-condition specifier `<*>' matches every start condition. Thus, the above
example could also have been written;

%x example

%%

<example>foo do_something();

http://dinosaur.compilertools.net/flex/flex_1.html
http://dinosaur.compilertools.net/flex/flex_10.html
http://dinosaur.compilertools.net/flex/flex_12.html
http://dinosaur.compilertools.net/flex/flex_25.html
http://dinosaur.compilertools.net/flex/index.html
http://dinosaur.compilertools.net/flex/index.html#SEC11

6/30/2018 Flex - a scanner generator - Start conditions

http://dinosaur.compilertools.net/flex/flex_11.html 2/5

<*>bar something_else();

The default rule (to `ECHO' any unmatched character) remains active in start conditions. It is equivalent to:

<*>.|\\n ECHO;

`BEGIN(0)' returns to the original state where only the rules with no start conditions are active. This state
can also be referred to as the start-condition "INITIAL", so `BEGIN(INITIAL)' is equivalent to `BEGIN(0)'.
(The parentheses around the start condition name are not required but are considered good style.)

BEGIN actions can also be given as indented code at the beginning of the rules section. For example, the
following will cause the scanner to enter the "SPECIAL" start condition whenever `yylex()' is called and
the global variable enter_special is true:

 int enter_special;

%x SPECIAL

%%

 if (enter_special)

 BEGIN(SPECIAL);

<SPECIAL>blahblahblah

...more rules follow...

To illustrate the uses of start conditions, here is a scanner which provides two different interpretations of a
string like "123.456". By default it will treat it as as three tokens, the integer "123", a dot ('.'), and the integer
"456". But if the string is preceded earlier in the line by the string "expect-floats" it will treat it as a single
token, the floating-point number 123.456:

%{

#include <math.h>

%}

%s expect

%%

expect-floats BEGIN(expect);

<expect>[0-9]+"."[0-9]+ {

 printf("found a float, = %f\n",

 atof(yytext));

 }

<expect>\n {

 /* that's the end of the line, so

 * we need another "expect-number"

 * before we'll recognize any more

 * numbers

 */

 BEGIN(INITIAL);

 }

[0-9]+ {

Version 2.5 December 1994 18

 printf("found an integer, = %d\n",

 atoi(yytext));

 }

"." printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line.

%x comment

%%

6/30/2018 Flex - a scanner generator - Start conditions

http://dinosaur.compilertools.net/flex/flex_11.html 3/5

 int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]* /* eat anything that's not a '*' */

<comment>"*"+[^*/\n]* /* eat up '*'s not followed by '/'s */

<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(INITIAL);

This scanner goes to a bit of trouble to match as much text as possible with each rule. In general, when
attempting to write a high-speed scanner try to match as much possible in each rule, as it's a big win.

Note that start-conditions names are really integer values and can be stored as such. Thus, the above could be
extended in the following fashion:

%x comment foo

%%

 int line_num = 1;

 int comment_caller;

"/*" {

 comment_caller = INITIAL;

 BEGIN(comment);

 }

...

<foo>"/*" {

 comment_caller = foo;

 BEGIN(comment);

 }

<comment>[^*\n]* /* eat anything that's not a '*' */

<comment>"*"+[^*/\n]* /* eat up '*'s not followed by '/'s */

<comment>\n ++line_num;

<comment>"*"+"/" BEGIN(comment_caller);

Furthermore, you can access the current start condition using the integer-valued YY_START macro. For
example, the above assignments to comment_caller could instead be written

comment_caller = YY_START;

Flex provides YYSTATE as an alias for YY_START (since that is what's used by AT&T lex).

Note that start conditions do not have their own name-space; %s's and %x's declare names in the same
fashion as #define's.

Finally, here's an example of how to match C-style quoted strings using exclusive start conditions, including
expanded escape sequences (but not including checking for a string that's too long):

%x str

%%

 char string_buf[MAX_STR_CONST];

 char *string_buf_ptr;

\" string_buf_ptr = string_buf; BEGIN(str);

<str>\" { /* saw closing quote - all done */

 BEGIN(INITIAL);

 *string_buf_ptr = '\0';

 /* return string constant token type and

 * value to parser

 */

 }

6/30/2018 Flex - a scanner generator - Start conditions

http://dinosaur.compilertools.net/flex/flex_11.html 4/5

<str>\n {

 /* error - unterminated string constant */

 /* generate error message */

 }

<str>\\[0-7]{1,3} {

 /* octal escape sequence */

 int result;

 (void) sscanf(yytext + 1, "%o", &result);

 if (result > 0xff)

 /* error, constant is out-of-bounds */

 *string_buf_ptr++ = result;

 }

<str>\\[0-9]+ {

 /* generate error - bad escape sequence; something

 * like '\48' or '\0777777'

 */

 }

<str>\\n *string_buf_ptr++ = '\n';

<str>\\t *string_buf_ptr++ = '\t';

<str>\\r *string_buf_ptr++ = '\r';

<str>\\b *string_buf_ptr++ = '\b';

<str>\\f *string_buf_ptr++ = '\f';

<str>\\(.|\n) *string_buf_ptr++ = yytext[1];

<str>[^\\\n\"]+ {

 char *yptr = yytext;

 while (*yptr)

 *string_buf_ptr++ = *yptr++;

 }

Often, such as in some of the examples above, you wind up writing a whole bunch of rules all preceded by
the same start condition(s). Flex makes this a little easier and cleaner by introducing a notion of start
condition scope. A start condition scope is begun with:

<SCs>{

where SCs is a list of one or more start conditions. Inside the start condition scope, every rule automatically
has the prefix `<SCs>' applied to it, until a `}' which matches the initial `{'. So, for example,

<ESC>{

 "\\n" return '\n';

 "\\r" return '\r';

 "\\f" return '\f';

 "\\0" return '\0';

}

is equivalent to:

<ESC>"\\n" return '\n';

<ESC>"\\r" return '\r';

<ESC>"\\f" return '\f';

<ESC>"\\0" return '\0';

Start condition scopes may be nested.

Three routines are available for manipulating stacks of start conditions:

`void yy_push_state(int new_state)'

6/30/2018 Flex - a scanner generator - Start conditions

http://dinosaur.compilertools.net/flex/flex_11.html 5/5

pushes the current start condition onto the top of the start condition stack and switches to new_state as
though you had used `BEGIN new_state' (recall that start condition names are also integers).

`void yy_pop_state()'

pops the top of the stack and switches to it via BEGIN.
`int yy_top_state()'

returns the top of the stack without altering the stack's contents.

The start condition stack grows dynamically and so has no built-in size limitation. If memory is exhausted,
program execution aborts.

To use start condition stacks, your scanner must include a `%option stack' directive (see Options below).

Go to the first, previous, next, last section, table of contents.

http://dinosaur.compilertools.net/flex/flex_1.html
http://dinosaur.compilertools.net/flex/flex_10.html
http://dinosaur.compilertools.net/flex/flex_12.html
http://dinosaur.compilertools.net/flex/flex_25.html
http://dinosaur.compilertools.net/flex/index.html

