
 ASxxxx Assemblers

 and

 ASLINK Relocating Linker

 Version 5.30
 January 2019

 CHAPTER 1 THE ASSEMBLER 1-1
 1.1 THE ASXXXX ASSEMBLERS 1-1
 1.1.1 Assembly Pass 1 1-2
 1.1.2 Assembly Pass 2 1-2
 1.1.3 Assembly Pass 3 1-3
 1.2 SOURCE PROGRAM FORMAT 1-3
 1.2.1 Statement Format 1-3
 1.2.1.1 Label Field 1-4
 1.2.1.2 Operator Field 1-6
 1.2.1.3 Operand Field 1-6
 1.2.1.4 Comment Field 1-7
 1.3 SYMBOLS AND EXPRESSIONS 1-7
 1.3.1 Character Set 1-7
 1.3.2 User-Defined Symbols 1-11
 1.3.3 Reusable Symbols 1-12
 1.3.4 Current Location Counter 1-13
 1.3.5 Numbers 1-15
 1.3.6 Terms 1-15
 1.3.7 Expressions 1-16
 1.4 GENERAL ASSEMBLER DIRECTIVES 1-17
 1.4.1 .module Directive 1-18
 1.4.2 .title Directive 1-18
 1.4.3 .sbttl Directive 1-18
 1.4.4 .list and .nlist Directives 1-19
 1.4.5 .page Directive 1-20
 1.4.6 .msg Directive 1-21
 1.4.7 .error Directive 1-22
 1.4.8 .byte, .db, and .fcb Directives 1-22
 1.4.9 .word, .dw, and .fdb Directives 1-23
 1.4.10 .3byte and .triple Directives 1-23
 1.4.11 .4byte and .quad Directive 1-24
 1.4.12 .blkb, .ds, .rmb, and .rs Directives 1-24
 1.4.13 .blkw, .blk3, and .blk4 Directives 1-24
 1.4.14 .ascii, .str, and .fcc Directives 1-25
 1.4.15 .ascis and .strs Directives 1-25
 1.4.16 .asciz and .strz Directives 1-26
 1.4.17 .assume Directive 1-27
 1.4.18 .radix Directive 1-27
 1.4.19 .even Directive 1-28
 1.4.20 .odd Directive 1-28
 1.4.21 .bndry Directive 1-28
 1.4.22 .area Directive 1-30
 1.4.23 .bank Directive 1-32
 1.4.24 .org Directive 1-33
 1.4.25 .globl Directive 1-34
 1.4.26 .local Directive 1-35
 1.4.27 .equ, .gblequ, and .lclequ Directives 1-36
 1.4.28 .if, .else, and .endif Directives 1-36
 1.4.29 .iff, .ift, and .iftf Directives 1-37
 1.4.30 .ifxx Directives 1-38
 1.4.31 .ifdef Directive 1-39
 1.4.32 .ifndef Directive 1-41
 1.4.33 .ifb Directive 1-42

 Page ii

 1.4.34 .ifnb Directive 1-43
 1.4.35 .ifidn Directive 1-44
 1.4.36 .ifdif Directive 1-45
 1.4.37 Alternate .if Directive Forms 1-46
 1.4.38 Immediate Conditional Assembly Directives 1-47
 1.4.39 .include Directive 1-48
 1.4.39.1 Including Files In Windows/DOS 1-50
 1.4.39.2 Including Files in Linux 1-51
 1.4.40 .define and .undefine Directives 1-52
 1.4.41 .setdp Directive 1-53
 1.4.42 .16bit, .24bit, and .32bit Directives 1-55
 1.4.43 .msb Directive 1-55
 1.4.44 .lohi and .hilo Directives 1-56
 1.4.45 .end Directive 1-56
 1.5 INVOKING ASXXXX 1-57
 1.6 ERRORS 1-61
 1.7 LISTING FILE 1-62
 1.8 SYMBOL TABLE FILE 1-65
 1.9 OBJECT FILE 1-65
 1.10 HINT FILE 1-66

 CHAPTER 2 THE MACRO PROCESSOR 2-1
 2.1 DEFINING MACROS 2-1
 2.1.1 .macro Directive 2-2
 2.1.2 .endm Directive 2-3
 2.1.3 .mexit Directive 2-3
 2.2 CALLING MACROS 2-4
 2.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS 2-5
 2.3.1 Macro Nesting 2-6
 2.3.2 Special Characters in Macro Arguments 2-7
 2.3.3 Passing Numerical Arguments as Symbols 2-8
 2.3.4 Number of Arguments in Macro Calls 2-9
 2.3.5 Creating Local Symbols Automatically 2-9
 2.3.6 Concatenation of Macro Arguments 2-10
 2.4 MACRO ATTRIBUTE DIRECTIVES 2-12
 2.4.1 .narg Directive 2-12
 2.4.2 .nchr Directive 2-13
 2.4.3 .ntyp Directive 2-14
 2.4.4 .nval Directive 2-15
 2.5 INDEFINITE REPEAT BLOCK DIRECTIVES 2-15
 2.5.1 .irp Directive 2-16
 2.5.2 .irpc Directive 2-17
 2.6 REPEAT BLOCK DIRECTIVE 2-18
 2.6.1 .rept Directive 2-18
 2.7 MACRO DELETION DIRECTIVE 2-19
 2.7.1 .mdelete Directive 2-19
 2.8 MACRO INVOCATION DETAILS 2-19
 2.9 CONTROLLING MACRO LISTINGS 2-20
 2.10 BUILDING A MACRO LIBRARY 2-21

 Page iii

 2.10.1 .mlib Macro Directive 2-21
 2.10.2 .mcall Macro Directive 2-22
 2.11 EXAMPLE MACRO CROSS ASSEMBLERS 2-24

 CHAPTER 3 THE LINKER 3-1
 3.1 ASLINK RELOCATING LINKER 3-1
 3.2 INVOKING ASLINK 3-2
 3.3 LIBRARY PATH(S) AND FILE(S) 3-5
 3.4 ASLINK PROCESSING 3-6
 3.5 ASXXXX VERSION 5.XX (4.XX) LINKING 3-9
 3.5.1 Object Module Format 3-9
 3.5.2 Header Line 3-10
 3.5.3 Module Line 3-10
 3.5.4 Merge Mode Line 3-10
 3.5.5 Bank Line 3-11
 3.5.6 Area Line 3-11
 3.5.7 Symbol Line 3-12
 3.5.8 T Line 3-12
 3.5.9 R Line 3-12
 3.5.10 P Line 3-13
 3.5.11 24-Bit and 32-Bit Addressing 3-14
 3.5.12 ASlink V5.xx (V4.xx) Error Messages 3-14
 3.6 ASXXXX VERSION 3.XX LINKING 3-17
 3.6.1 Object Module Format 3-17
 3.6.2 Header Line 3-18
 3.6.3 Module Line 3-18
 3.6.4 Area Line 3-18
 3.6.5 Symbol Line 3-18
 3.6.6 T Line 3-19
 3.6.7 R Line 3-19
 3.6.8 P Line 3-20
 3.6.9 24-Bit and 32-Bit Addressing 3-20
 3.6.10 ASlink V3.xx Error Messages 3-21
 3.7 HINT FILE FORMAT FOR RELOCATED LISTINGS 3-23
 3.8 INTEL IHX OUTPUT FORMAT (16-BIT) 3-25
 3.9 INTEL I86 OUTPUT FORMAT (24 OR 32-BIT) 3-27
 3.10 MOTOROLA S1-S9 OUTPUT FORMAT (16-BIT) 3-29
 3.11 MOTOROLA S2-S8 OUTPUT FORMAT (24-BIT) 3-30
 3.12 MOTOROLA S3-S7 OUTPUT FORMAT (32-BIT) 3-31
 3.13 TANDY COLOR COMPUTER DISK BASIC FORMAT 3-32

 CHAPTER 4 BUILDING ASXXXX AND ASLINK 4-1
 4.1 BUILDING ASXXXX AND ASLINK WITH LINUX 4-2
 4.2 BUILDING ASXXXX AND ASLINK UNDER CYGWIN 4-2
 4.3 BUILDING ASXXXX AND ASLINK WITH DJGPP 4-3
 4.4 BUILDING ASXXXX AND ASLINK WITH BORLAND'S
 TURBO C++ 3.0 4-3
 4.4.1 Graphical User Interface 4-4
 4.4.2 Command Line Interface 4-4

 Page iv

 4.5 BUILDING ASXXXX AND ASLINK WITH
 MS VISUAL C++ 6.0 4-5
 4.5.1 Graphical User Interface 4-5
 4.5.2 Command Line Interface 4-5
 4.6 BUILDING ASXXXX AND ASLINK WITH
 MS VISUAL STUDIO 2005 4-6
 4.6.1 Graphical User Interface 4-6
 4.6.2 Command Line Interface 4-6
 4.7 BUILDING ASXXXX AND ASLINK WITH
 MS VISUAL STUDIO 2010 4-7
 4.7.1 Graphical User Interface 4-7
 4.7.2 Command Line Interface 4-7
 4.8 BUILDING ASXXXX AND ASLINK WITH
 MS VISUAL STUDIO 2013 4-8
 4.8.1 Graphical User Interface 4-8
 4.8.2 Command Line Interface 4-8
 4.9 BUILDING ASXXXX AND ASLINK WITH
 MS VISUAL STUDIO 2015 4-9
 4.9.1 Graphical User Interface 4-9
 4.9.2 Command Line Interface 4-10
 4.10 BUILDING ASXXXX AND ASLINK WITH
 OPEN WATCOM V1.9 4-11
 4.10.1 Graphical User Interface 4-11
 4.10.2 Command Line Interface 4-11
 4.11 BUILDING ASXXXX AND ASLINK WITH
 SYMANTEC C/C++ V7.2 4-12
 4.11.1 Graphical User Interface 4-12
 4.11.2 Command Line Interface 4-12
 4.12 THE _CLEAN.BAT AND _PREP.BAT FILES 4-13

 APPENDIX A ASXSCN LISTING FILE SCANNER A-1

 APPENDIX B ASXCNV LISTING CONVERTER B-1

 APPENDIX C S19OS9 CONVERSION UTILITY C-1
 C.1 BACKGROUND C-1
 C.2 CREATING AN OS9 MODULE C-2
 C.2.1 Step 1: Define Header Values C-3
 C.2.2 Step 2: Create The Module Header C-3
 C.2.3 Step 3: Allocate Storage C-5
 C.2.4 Step 4: Insert The Program Code C-6
 C.2.5 Step 5: End Assembly By Inserting CRC C-7
 C.3 THE CONVERSION UTILITY: S19OS9 C-7

 APPENDIX D RELEASE NOTES D-1

 APPENDIX E CONTRIBUTORS E-1

 Page v

 APPENDIX AA ASCHECK ASSEMBLER AA-1
 AA.1 .opcode DIRECTIVE AA-2

 APPENDIX AB AS1802 ASSEMBLER AB-1
 AB.1 ACKNOWLEDGMENT AB-1
 AB.2 1802 REGISTER SET AB-1
 AB.3 1802 INSTRUCTION SET AB-2
 AB.3.1 1802 Inherent Instructions AB-2
 AB.3.2 1802 Short Branch Instructions AB-3
 AB.3.3 1802 Long Branch Instructions AB-3
 AB.3.4 1802 Immediate Instructions AB-3
 AB.3.5 1802 Register Instructions AB-3
 AB.3.6 1802 Input and Output Instructions AB-4
 AB.3.7 CDP1802 COSMAC Microprocessor Instruction
 Set Summary AB-5

 APPENDIX AC AS2650 ASSEMBLER AC-1
 AC.1 2650 REGISTER SET AC-1
 AC.2 2650 INSTRUCTION SET AC-1
 AC.2.1 Load / Store Instructions AC-2
 AC.2.2 Arithmetic / Compare Instructions AC-2
 AC.2.3 Logical / Rotate Instructions AC-2
 AC.2.4 Condition Code Branches AC-3
 AC.2.5 Register Test Branches AC-3
 AC.2.6 Branches (to Subroutines) / Returns AC-3
 AC.2.7 Input / Output AC-3
 AC.2.8 Miscellaneos AC-4
 AC.2.9 Program Status AC-4

 APPENDIX AD AS430 ASSEMBLER AD-1
 AD.1 MPS430 REGISTER SET AD-1
 AD.2 MPS430 ADDRESSING MODES AD-2
 AD.2.1 MPS430 Instruction Mnemonics AD-3

 APPENDIX AE AS6100 ASSEMBLER AE-1
 AE.1 6100 MACHINE DESCRIPTION AE-1
 AE.2 ASSEMBLER SPECIFIC DIRECTIVES AE-1
 AE.3 MACHINE SPECIFIC DIRECTIVES AE-2
 AE.3.1 .setpg AE-3
 AE.3.2 .mempn AE-3
 AE.3.3 .mempa AE-3
 AE.4 6100 INSTRUCTION SET AE-4
 AE.4.1 Basic Instructions AE-4
 AE.4.2 Operate Instructions AE-5
 AE.4.2.1 Group 1 Operate Instructions AE-5
 AE.4.2.2 Group 2 Operate Instructions AE-6
 AE.4.2.3 Group 3 Operate Instructions AE-6
 AE.4.2.4 Group Errors AE-7
 AE.4.3 Input/Output (IOT) Instructions AE-7

 Page vi

 APPENDIX AF AS61860 ASSEMBLER AF-1
 AF.1 ACKNOWLEDGMENT AF-1
 AF.2 61860 REGISTER SET AF-1
 AF.3 PROCESSOR SPECIFIC DIRECTIVES AF-2
 AF.4 61860 INSTRUCTION SET AF-2
 AF.4.1 Load Immediate Register AF-3
 AF.4.2 Load Accumulator AF-3
 AF.4.3 Store Accumulator AF-3
 AF.4.4 Move Data AF-3
 AF.4.5 Exchange Data AF-4
 AF.4.6 Stack Operations AF-4
 AF.4.7 Block Move Data AF-4
 AF.4.8 Block Exchange Data AF-4
 AF.4.9 Increment and Decrement AF-5
 AF.4.10 Increment/Decrement with Load/Store AF-5
 AF.4.11 Fill AF-6
 AF.4.12 Addition and Subtraction AF-6
 AF.4.13 Shift Operations AF-6
 AF.4.14 Boolean Operations AF-6
 AF.4.15 Compare AF-7
 AF.4.16 CPU Control AF-7
 AF.4.17 Absolute Jumps AF-7
 AF.4.18 Relative Jumps AF-8
 AF.4.19 Calls AF-8
 AF.4.20 Input and output AF-8
 AF.4.21 Unknown Commands AF-9

 APPENDIX AG AS6500 ASSEMBLER AG-1
 AG.1 ACKNOWLEDGMENT AG-1
 AG.2 6500 REGISTER SET AG-2
 AG.3 6500 INSTRUCTION SET AG-2
 AG.3.1 Processor Specific Directives AG-3
 AG.3.2 65xx Core Inherent Instructions AG-3
 AG.3.3 65xx Core Branch Instructions AG-3
 AG.3.4 65xx Core Single Operand Instructions AG-4
 AG.3.5 65xx Core Double Operand Instructions AG-4
 AG.3.6 65xx Core Jump and Jump to Subroutine
 Instructions AG-4
 AG.3.7 65xx Core Miscellaneous X and Y Register
 Instructions AG-4
 AG.3.8 65F11 and 65F12 Specific Instructions AG-5
 AG.3.9 65C00/21 and 65C29 Specific Instructions AG-5
 AG.3.10 65C02, 65C102, and 65C112 Specific
 Instructions AG-6

 APPENDIX AH AS6800 ASSEMBLER AH-1
 AH.1 6800 REGISTER SET AH-1
 AH.2 6800 INSTRUCTION SET AH-1
 AH.2.1 Inherent Instructions AH-2

 Page vii

 AH.2.2 Branch Instructions AH-2
 AH.2.3 Single Operand Instructions AH-3
 AH.2.4 Double Operand Instructions AH-4
 AH.2.5 Jump and Jump to Subroutine Instructions AH-4
 AH.2.6 Long Register Instructions AH-5

 APPENDIX AI AS6801 ASSEMBLER AI-1
 AI.1 .hd6303 DIRECTIVE AI-1
 AI.2 6801 REGISTER SET AI-1
 AI.3 6801 INSTRUCTION SET AI-1
 AI.3.1 Inherent Instructions AI-2
 AI.3.2 Branch Instructions AI-3
 AI.3.3 Single Operand Instructions AI-3
 AI.3.4 Double Operand Instructions AI-5
 AI.3.5 Jump and Jump to Subroutine Instructions AI-5
 AI.3.6 Long Register Instructions AI-6
 AI.3.7 6303 Specific Instructions AI-6

 APPENDIX AJ AS6804 ASSEMBLER AJ-1
 AJ.1 6804 REGISTER SET AJ-1
 AJ.2 6804 INSTRUCTION SET AJ-1
 AJ.2.1 Inherent Instructions AJ-2
 AJ.2.2 Branch Instructions AJ-2
 AJ.2.3 Single Operand Instructions AJ-2
 AJ.2.4 Jump and Jump to Subroutine Instructions AJ-2
 AJ.2.5 Bit Test Instructions AJ-3
 AJ.2.6 Load Immediate data Instruction AJ-3
 AJ.2.7 6804 Derived Instructions AJ-3

 APPENDIX AK AS68(HC)05 ASSEMBLER AK-1
 AK.1 .6805 DIRECTIVE AK-1
 AK.2 .hc05 DIRECTIVE AK-1
 AK.3 THE .__.CPU. VARIABLE AK-1
 AK.4 6805 REGISTER SET AK-2
 AK.5 6805 INSTRUCTION SET AK-2
 AK.5.1 Control Instructions AK-3
 AK.5.2 Bit Manipulation Instructions AK-3
 AK.5.3 Branch Instructions AK-3
 AK.5.4 Read-Modify-Write Instructions AK-4
 AK.5.5 Register\Memory Instructions AK-4
 AK.5.6 Jump and Jump to Subroutine Instructions AK-5

 APPENDIX AL AS68(HC[S])08 ASSEMBLER AL-1
 AL.1 PROCESSOR SPECIFIC DIRECTIVES AL-1
 AL.1.1 .hc08 Directive AL-1
 AL.1.2 .hcs08 Directive AL-2
 AL.1.3 .6805 Directive AL-2
 AL.1.4 .hc05 Directive AL-2
 AL.1.5 The .__.CPU. Variable AL-3

 Page viii

 AL.2 68HC(S)08 REGISTER SET AL-3
 AL.3 68HC(S)08 INSTRUCTION SET AL-4
 AL.3.1 Control Instructions AL-5
 AL.3.2 Bit Manipulation Instructions AL-5
 AL.3.3 Branch Instructions AL-5
 AL.3.4 Complex Branch Instructions AL-5
 AL.3.5 Read-Modify-Write Instructions AL-6
 AL.3.6 Register\Memory Instructions AL-7
 AL.3.7 Double Operand Move Instruction AL-7
 AL.3.8 16-Bit <H:X> Index Register Instructions AL-7
 AL.3.9 Jump and Jump to Subroutine Instructions AL-7

 APPENDIX AM AS6809 ASSEMBLER AM-1
 AM.1 6809 REGISTER SET AM-1
 AM.2 6809 INSTRUCTION SET AM-1
 AM.2.1 Inherent Instructions AM-3
 AM.2.2 Short Branch Instructions AM-3
 AM.2.3 Long Branch Instructions AM-4
 AM.2.4 Single Operand Instructions AM-5
 AM.2.5 Double Operand Instructions AM-6
 AM.2.6 D-register Instructions AM-6
 AM.2.7 Index/Stack Register Instructions AM-7
 AM.2.8 Jump and Jump to Subroutine Instructions AM-7
 AM.2.9 Register - Register Instructions AM-7
 AM.2.10 Condition Code Register Instructions AM-7
 AM.2.11 6800 Compatibility Instructions AM-8

 APPENDIX AN AS6811 ASSEMBLER AN-1
 AN.1 68HC11 REGISTER SET AN-1
 AN.2 68HC11 INSTRUCTION SET AN-1
 AN.2.1 Inherent Instructions AN-2
 AN.2.2 Branch Instructions AN-3
 AN.2.3 Single Operand Instructions AN-4
 AN.2.4 Double Operand Instructions AN-5
 AN.2.5 Bit Manupulation Instructions AN-5
 AN.2.6 Jump and Jump to Subroutine Instructions AN-6
 AN.2.7 Long Register Instructions AN-6

 APPENDIX AO AS68(HC[S])12 ASSEMBLER AO-1
 AO.1 PROCESSOR SPECIFIC DIRECTIVES AO-1
 AO.1.1 .hc12 Directive AO-1
 AO.1.2 .hcs12 Directive AO-1
 AO.1.3 The .__.CPU. Variable AO-2
 AO.2 68HC(S)12 REGISTER SET AO-2
 AO.3 68HC(S)12 INSTRUCTION SET AO-3
 AO.3.1 Inherent Instructions AO-4
 AO.3.2 Short Branch Instructions AO-5
 AO.3.3 Long Branch Instructions AO-5
 AO.3.4 Branch on Decrement, Test, or Increment AO-5

 Page ix

 AO.3.5 Bit Clear and Set Instructions AO-5
 AO.3.6 Branch on Bit Clear or Set AO-6
 AO.3.7 Single Operand Instructions AO-6
 AO.3.8 Double Operand Instructions AO-7
 AO.3.9 Move Instructions AO-7
 AO.3.10 D-register Instructions AO-7
 AO.3.11 Index/Stack Register Instructions AO-8
 AO.3.12 Jump and Jump/Call to Subroutine
 Instructions AO-8
 AO.3.13 Other Special Instructions AO-8
 AO.3.14 Register - Register Instructions AO-8
 AO.3.15 Condition Code Register Instructions AO-9
 AO.3.16 M68HC11 Compatibility Mode Instructions AO-9

 APPENDIX AP AS6816 ASSEMBLER AP-1
 AP.1 68HC16 REGISTER SET AP-1
 AP.2 68HC16 INSTRUCTION SET AP-1
 AP.2.1 Inherent Instructions AP-3
 AP.2.2 Push/Pull Multiple Register Instructions AP-3
 AP.2.3 Short Branch Instructions AP-3
 AP.2.4 Long Branch Instructions AP-4
 AP.2.5 Bit Manipulation Instructions AP-4
 AP.2.6 Single Operand Instructions AP-5
 AP.2.7 Double Operand Instructions AP-6
 AP.2.8 Index/Stack Register Instructions AP-7
 AP.2.9 Jump and Jump to Subroutine Instructions AP-7
 AP.2.10 Condition Code Register Instructions AP-7
 AP.2.11 Multiply and Accumulate Instructions AP-7

 APPENDIX AQ AS740 ASSEMBLER AQ-1
 AQ.1 ACKNOWLEDGMENT AQ-1
 AQ.2 740 REGISTER SET AQ-1
 AQ.3 740 INSTRUCTION SET AQ-2
 AQ.3.1 Inherent Instructions AQ-3
 AQ.3.2 Branch Instructions AQ-3
 AQ.3.3 Single Operand Instructions AQ-3
 AQ.3.4 Double Operand Instructions AQ-4
 AQ.3.5 Jump and Jump to Subroutine Instructions AQ-4
 AQ.3.6 Miscellaneous X and Y Register Instructions AQ-4
 AQ.3.7 Bit Instructions AQ-4
 AQ.3.8 Other Instructions AQ-4

 APPENDIX AR AS78K0 ASSEMBLER AR-1
 AR.1 PROCESSOR SPECIFIC DIRECTIVES AR-1
 AR.1.1 .setdp Directive AR-1
 AR.1.2 .xerr Directive AR-2
 AR.2 78K/0 REGISTER SET AR-3
 AR.3 78K/0 INSTRUCTION SET AR-3
 AR.3.1 Inherent Instructions AR-5

 Page x

 AR.3.2 Branch Instructions AR-5
 AR.3.3 Single Operand Instructions AR-6
 AR.3.4 Double Operand Instructions AR-6

 APPENDIX AS AS78K0S ASSEMBLER AS-1
 AS.1 78K/0S REGISTER SET AS-1
 AS.2 78K/0S INSTRUCTION SET AS-1
 AS.2.1 Inherent Instructions AS-3
 AS.2.2 Branch Instructions AS-3
 AS.2.3 Single Operand Instructions AS-3
 AS.2.4 Double Operand Instructions AS-4

 APPENDIX AT AS8008 ASSEMBLER AT-1
 AT.1 8008 REGISTER SET AT-1
 AT.2 8008 INSTRUCTION SET AT-2
 AT.2.1 Instruction Listing AT-2

 APPENDIX AU AS8008S ASSEMBLER AU-1
 AU.1 8008 REGISTER SET AU-1
 AU.2 8008 INSTRUCTION SET AU-2
 AU.2.1 Instruction Listing AU-3

 APPENDIX AV AS8048 ASSEMBLER AV-1
 AV.1 .8048 DIRECTIVE AV-1
 AV.2 .8041 DIRECTIVE AV-1
 AV.3 .8022 DIRECTIVE AV-2
 AV.4 .8021 DIRECTIVE AV-2
 AV.5 THE .__.CPU. VARIABLE AV-2
 AV.6 8048 REGISTER SET AV-3
 AV.7 8048 INSTRUCTION SET AV-4
 AV.7.1 Alphabetical Instruction Listing AV-5

 APPENDIX AW AS8051 ASSEMBLER AW-1
 AW.1 ACKNOWLEDGMENT AW-1
 AW.2 8051 REGISTER SET AW-1
 AW.3 8051 INSTRUCTION SET AW-2
 AW.3.1 Inherent Instructions AW-2
 AW.3.2 Move Instructions AW-3
 AW.3.3 Single Operand Instructions AW-3
 AW.3.4 Two Operand Instructions AW-4
 AW.3.5 Call and Return Instructions AW-4
 AW.3.6 Jump Instructions AW-4
 AW.3.7 Predefined Symbols: SFR Map AW-5
 AW.3.8 Predefined Symbols: SFR Bit Addresses AW-6
 AW.3.9 Predefined Symbols: Control Bits AW-7

 APPENDIX AX AS8085 ASSEMBLER AX-1
 AX.1 8085 REGISTER SET AX-1
 AX.2 8085 INSTRUCTION SET AX-1

 Page xi

 AX.2.1 Inherent Instructions AX-2
 AX.2.2 Register/Memory/Immediate Instructions AX-2
 AX.2.3 Call and Return Instructions AX-2
 AX.2.4 Jump Instructions AX-3
 AX.2.5 Input/Output/Reset Instructions AX-3
 AX.2.6 Move Instructions AX-3
 AX.2.7 Other Instructions AX-3
 AX.2.8 Unspecified Instructions AX-4
 AX.3 UNSPECIFIED OPCODE ARTICLE AX-5

 APPENDIX AY AS8X300 ASSEMBLER AY-1
 AY.1 PROCESSOR SPECIFIC DIRECTIVES AY-1
 AY.1.1 .8x300 Directive AY-1
 AY.1.2 .8x305 Directive AY-2
 AY.1.3 .liv Directive AY-2
 AY.1.4 .riv Directive AY-2
 AY.1.5 .fdef Directive AY-2
 AY.1.6 .xtnd Directive AY-3
 AY.1.7 .xerr Directive AY-3
 AY.2 THE 8X300/8X305 MACRO LIBRARY AY-4
 AY.2.1 ORG AY-4
 AY.2.2 PROC AY-5
 AY.2.3 ENTRY AY-5
 AY.2.4 CALL, RTN, and CALL_TABLE AY-5
 AY.3 8X300 AND 8X305 REGISTER SETS AY-7
 AY.4 8X300 AND 8X305 INSTRUCTION SETS AY-8
 AY.4.1 Instruction Listing AY-9

 APPENDIX AZ AS8XCXXX ASSEMBLER AZ-1
 AZ.1 ACKNOWLEDGMENTS AZ-1
 AZ.2 AS8XCXXX ASSEMBLER DIRECTIVES AZ-1
 AZ.2.1 Processor Selection Directives AZ-1
 AZ.2.2 .cpu Directive AZ-2
 AZ.2.3 Processor Addressing Range Directives AZ-3
 AZ.2.4 The .__.CPU. Variable AZ-3
 AZ.2.5 DS80C390 Addressing Mode Directive AZ-4
 AZ.2.6 The .msb Directive AZ-4
 AZ.3 DS8XCXXX REGISTER SET AZ-6
 AZ.4 DS8XCXXX INSTRUCTION SET AZ-6
 AZ.4.1 Inherent Instructions AZ-7
 AZ.4.2 Move Instructions AZ-7
 AZ.4.3 Single Operand Instructions AZ-8
 AZ.4.4 Two Operand Instructions AZ-8
 AZ.4.5 Call and Return Instructions AZ-9
 AZ.4.6 Jump Instructions AZ-9
 AZ.5 DS8XCXXX SPECIAL FUNCTION REGISTERS AZ-10
 AZ.5.1 SFR Map AZ-10
 AZ.5.2 Bit Addressable Registers: Generic AZ-11
 AZ.5.3 Bit Addressable Registers: Specific AZ-12

 Page xii

 AZ.5.4 Optional Symbols: Control Bits AZ-13
 AZ.6 DS80C310 SPECIAL FUNCTION REGISTERS AZ-14
 AZ.6.1 SFR Map AZ-14
 AZ.6.2 Bit Addressable Registers: Generic AZ-15
 AZ.6.3 Bit Addressable Registers: Specific AZ-16
 AZ.6.4 Optional Symbols: Control Bits AZ-17
 AZ.7 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS AZ-18
 AZ.7.1 SFR Map AZ-18
 AZ.7.2 Bit Addressable Registers: Generic AZ-19
 AZ.7.3 Bit Addressable Registers: Specific AZ-20
 AZ.7.4 Optional Symbols: Control Bits AZ-21
 AZ.8 DS80C390 SPECIAL FUNCTION REGISTERS AZ-22
 AZ.8.1 SFR Map AZ-22
 AZ.8.2 Bit Addressable Registers: Generic AZ-23
 AZ.8.3 Bit Addressable Registers: Specific AZ-24
 AZ.8.4 Optional Symbols: Control Bits AZ-25
 AZ.9 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS AZ-27
 AZ.9.1 SFR Map AZ-27
 AZ.9.2 Bit Addressable Registers: Generic AZ-28
 AZ.9.3 Bit Addressable Registers: Specific AZ-29
 AZ.9.4 Optional Symbols: Control Bits AZ-30
 AZ.10 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS AZ-31
 AZ.10.1 SFR Map AZ-31
 AZ.10.2 Bit Addressable Registers: Generic AZ-32
 AZ.10.3 Bit Addressable Registers: Specific AZ-33
 AZ.10.4 Optional Symbols: Control Bits AZ-34
 AZ.11 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS AZ-35
 AZ.11.1 SFR Map AZ-35
 AZ.11.2 Bit Addressable Registers: Generic AZ-37
 AZ.11.3 Bit Addressable Registers: Specific AZ-39
 AZ.11.4 Optional Symbols: Control Bits AZ-41

 APPENDIX BA ASAVR ASSEMBLER BA-1
 BA.1 AVR ASSEMBLER NOTES BA-1
 BA.1.1 Processor Specific Directives BA-2
 BA.1.2 The .__.CPU. Variable BA-3
 BA.2 AVR REGISTER SET BA-4
 BA.3 AVR INSTRUCTION SET BA-4
 BA.3.1 AVR Arithmetic and Logical Instructions BA-6
 BA.3.2 AVR Bit and Bit-Test Instructions BA-6
 BA.3.3 AVR Skip on Test Instructions BA-7
 BA.3.4 AVR Jump/Call/Return Instructions BA-7
 BA.3.5 AVR Short Branch Instructions BA-7
 BA.3.6 AVR Short Branch Instructions with Bit Test BA-7
 BA.3.7 AVR Data Transfer Instructions BA-7

 APPENDIX BB ASEZ80 ASSEMBLER BB-1
 BB.1 ACKNOWLEDGMENT BB-1
 BB.2 PROCESSOR SPECIFIC DIRECTIVES BB-1

 Page xiii

 BB.2.1 .z80 Directive BB-2
 BB.2.2 .adl Directive BB-2
 BB.2.3 .msb Directive BB-2
 BB.3 EZ80 ADDRESSING AND INSTRUCTIONS BB-4
 BB.3.1 Instruction Symbols BB-4
 BB.3.2 EZ80 Instructions BB-6
 BB.3.3 Arithmetic Instructions BB-9
 BB.3.4 Bit Manipulation Instructions BB-10
 BB.3.5 Block Transfer and Compare Instructions BB-10
 BB.3.6 Exchange Instructions BB-10
 BB.3.7 Input/Output Instructions BB-10
 BB.3.8 Load Instructions BB-11
 BB.3.9 Logical Instructions BB-11
 BB.3.10 Processor Control Instructions BB-11
 BB.3.11 Program Flow Instructions BB-11
 BB.3.12 Shift and Rotate Instructions BB-12

 APPENDIX BC ASF2MC8 ASSEMBLER BC-1
 BC.1 PROCESSOR SPECIFIC DIRECTIVES BC-1
 BC.1.1 .F2MC8L Directive BC-1
 BC.1.2 .F2MC8FX Directive BC-1
 BC.1.3 The .__.CPU. Variable BC-2
 BC.2 F2MC8L/F2MC8FX REGISTERS BC-2
 BC.3 F2MC8L/F2MC8FX INSTRUCTION SET BC-3
 BC.3.1 Transfer Instructions BC-5
 BC.3.2 Operation Instructions BC-5
 BC.3.3 Branch/Jump/Call Instructions BC-5
 BC.3.4 Other Instructions BC-5

 APPENDIX BD ASF8 ASSEMBLER BD-1
 BD.1 F8 REGISTERS BD-2
 BD.2 F8 INSTRUCTION SET BD-4
 BD.2.1 Accumulator Group Instructions BD-5
 BD.2.2 Branch Instructions BD-5
 BD.2.3 Memory Reference Instructions BD-5
 BD.2.4 Address Register Instructions BD-5
 BD.2.5 Scratchpad Register Instructions BD-6
 BD.2.6 Miscellaneous Instructions BD-6

 APPENDIX BE ASGB ASSEMBLER BE-1
 BE.1 ACKNOWLEDGEMENT BE-1
 BE.2 INTRODUCTION BE-1
 BE.3 GAMEBOY REGISTER SET AND CONDITIONS BE-2
 BE.4 GAMEBOY INSTRUCTION SET BE-2
 BE.4.1 .tile Directive BE-3
 BE.4.2 Potentially Controversial Mnemonic Selection BE-4
 BE.4.2.1 Auto-Indexing Loads BE-5
 BE.4.2.2 Input and Output Operations BE-5
 BE.4.2.3 The 'stop' Instruction BE-5

 Page xiv

 BE.4.3 Inherent Instructions BE-6
 BE.4.4 Implicit Operand Instructions BE-6
 BE.4.5 Load Instructions BE-6
 BE.4.6 Call/Return Instructions BE-7
 BE.4.7 Jump Instructions BE-7
 BE.4.8 Bit Manipulation Instructions BE-7
 BE.4.9 Input and Output Instructions BE-7
 BE.4.10 Register Pair Instructions BE-8

 APPENDIX BF ASH8 ASSEMBLER BF-1
 BF.1 H8/3XX REGISTER SET BF-1
 BF.2 H8/3XX INSTRUCTION SET BF-1
 BF.2.1 Inherent Instructions BF-2
 BF.2.2 Branch Instructions BF-3
 BF.2.3 Single Operand Instructions BF-4
 BF.2.4 Double Operand Instructions BF-5
 BF.2.5 Mov Instructions BF-7
 BF.2.6 Bit Manipulation Instructions BF-8
 BF.2.7 Extended Bit Manipulation Instructions BF-9
 BF.2.8 Condition Code Instructions BF-9
 BF.2.9 Other Instructions BF-10
 BF.2.10 Jump and Jump to Subroutine Instructions BF-10

 APPENDIX BG ASM8C ASSEMBLER BG-1
 BG.1 M8C REGISTER SET BG-1
 BG.2 M8C ADDRESSING MODES BG-1
 BG.3 M8C INSTRUCTION SET BG-2
 BG.3.1 Double Operand Arithmetic Instructions BG-2
 BG.3.2 Double Operand Logic Instructions BG-3
 BG.3.3 Miscellaneous Double Operand Instructions BG-3
 BG.3.4 Single Operand Shift/Rotate Instructions BG-3
 BG.3.5 Miscellaneous Single Operand Instructions BG-4
 BG.3.6 Move Instructions BG-4
 BG.3.7 Inherent Instructions BG-5
 BG.3.8 Branching Instructions BG-5
 BG.3.9 Relative Table Read Instruction BG-5

 APPENDIX BH ASPIC ASSEMBLER BH-1
 BH.1 PIC ASSEMBLER NOTES BH-1
 BH.2 PROCESSOR SPECIFIC DIRECTIVES BH-1
 BH.2.1 .pic Directive BH-2
 BH.2.2 .picnopic Directive BH-3
 BH.2.3 .pic12bit Directive BH-3
 BH.2.4 .pic14bit Directive BH-3
 BH.2.5 .pic16bit Directive BH-3
 BH.2.6 .pic20bit Directive BH-4
 BH.2.7 The .__.CPU. Variable BH-4
 BH.2.8 .picfix Directive BH-5
 BH.2.9 .maxram Directive BH-5

 Page xv

 BH.2.10 .badram Directive BH-5
 BH.2.11 .setdmm Directive BH-6
 BH.3 12-BIT OPCODE PIC BH-6
 BH.4 14-BIT OPCODE PIC BH-7
 BH.5 16-BIT OPCODE PIC BH-9
 BH.6 20-BIT ADDRESSING PIC BH-10
 BH.7 PIC OPCODES BH-11

 APPENDIX BI ASRAB ASSEMBLER BI-1
 BI.1 ACKNOWLEDGMENT BI-1
 BI.2 PROCESSOR SPECIFIC DIRECTIVES BI-1
 BI.2.1 .r2k Directive BI-2
 BI.2.2 .hd64 Directive BI-2
 BI.2.3 .z80 Directive BI-2
 BI.2.4 The .__.CPU. Variable BI-3
 BI.3 RABBIT 2000/3000 ADDRESSING AND INSTRUCTIONS BI-4
 BI.3.1 Instruction Symbols BI-4
 BI.3.2 Rabbit Instructions BI-6
 BI.4 Z80/HD64180 ADDRESSING AND INSTRUCTIONS BI-8
 BI.4.1 Inherent Instructions BI-9
 BI.4.2 Implicit Operand Instructions BI-9
 BI.4.3 Load Instruction BI-10
 BI.4.4 Call/Return Instructions BI-10
 BI.4.5 Jump and Jump to Subroutine Instructions BI-10
 BI.4.6 Bit Manipulation Instructions BI-11
 BI.4.7 Interrupt Mode and Reset Instructions BI-11
 BI.4.8 Input and Output Instructions BI-11
 BI.4.9 Register Pair Instructions BI-11
 BI.4.10 HD64180 Specific Instructions BI-12

 APPENDIX BJ ASSCMP ASSEMBLER BJ-1
 BJ.1 SC/MP REGISTER SET BJ-1
 BJ.2 SC/MP ADDRESSING MODES BJ-1
 BJ.3 SC/MP INSTRUCTION SET BJ-2
 BJ.3.1 Memory Reference Instructions BJ-2
 BJ.3.2 Immediate Instructions BJ-2
 BJ.3.3 Extension Register Instructions BJ-3
 BJ.3.4 Memory Increment/Decrement Instructions BJ-3
 BJ.3.5 Transfer Instructions BJ-3
 BJ.3.6 Pointer Register Move Instructions BJ-3
 BJ.3.7 Shift, Rotate, Serial I/O Instructions BJ-4
 BJ.3.8 Single-Byte Miscellaneous Instructions BJ-4
 BJ.3.9 Double-Byte Miscellaneous Instruction BJ-4

 APPENDIX BK ASST6 ASSEMBLER BK-1
 BK.1 ST6 REGISTER SET BK-1
 BK.2 ST6 INSTRUCTION SET BK-1
 BK.2.1 Inherent Instructions BK-2
 BK.2.2 Conditional Branch Instructions BK-2

 Page xvi

 BK.2.3 Bit Manipulation Instructions BK-2
 BK.2.4 Single Operand Instructions BK-2
 BK.2.5 Double Operand Instructions BK-3
 BK.2.6 Call to Subroutine and Jump Instructions BK-3
 BK.2.7 Load and Store Instructions BK-3

 APPENDIX BL ASST7 ASSEMBLER BL-1
 BL.1 ST7 REGISTER SET BL-1
 BL.2 ST7 INSTRUCTION SET BL-1
 BL.2.1 Inherent Instructions BL-4
 BL.2.2 Conditional Branch Instructions BL-4
 BL.2.3 Bit Test and Branch Instructions BL-4
 BL.2.4 Bit Manipulation Instructions BL-5
 BL.2.5 Single Operand Instructions BL-5
 BL.2.6 Double Operand Instructions BL-5
 BL.2.7 Call to Subroutine and Jump Instructions BL-5

 APPENDIX BM ASST8 ASSEMBLER BM-1
 BM.1 ST8 REGISTER SET BM-1
 BM.2 ST8 INSTRUCTION SET BM-1
 BM.2.1 Inherent Instructions BM-5
 BM.2.2 Conditional Branch Instructions BM-5
 BM.2.3 Bit Test and Branch Instructions BM-5
 BM.2.4 Bit Manipulation Instructions BM-5
 BM.2.5 Single Operand Instructions BM-6
 BM.2.6 Double Operand Instructions BM-7
 BM.2.7 Call to Subroutine and Jump Instructions BM-7

 APPENDIX BN ASZ8 ASSEMBLER BN-1
 BN.1 Z8 REGISTER SET BN-1
 BN.2 Z8 INSTRUCTION SET BN-1
 BN.2.1 Load Instructions BN-2
 BN.2.2 Arithmetic Instructions BN-3
 BN.2.3 Logical Instructions BN-3
 BN.2.4 Program Control Instructions BN-3
 BN.2.5 Bit Manipulation Instructions BN-3
 BN.2.6 Block Transfer Instructions BN-3
 BN.2.7 Rotate and Shift Instructions BN-3
 BN.2.8 Cpu Control Instructions BN-4

 APPENDIX BO ASZ80 ASSEMBLER BO-1
 BO.1 .z80 DIRECTIVE BO-1
 BO.2 .hd64 DIRECTIVE BO-1
 BO.3 THE .__.CPU. VARIABLE BO-2
 BO.4 Z80 REGISTER SET AND CONDITIONS BO-2
 BO.5 Z80 INSTRUCTION SET BO-3
 BO.5.1 Inherent Instructions BO-4
 BO.5.2 Implicit Operand Instructions BO-4
 BO.5.3 Load Instruction BO-5

 Page xvii

 BO.5.4 Call/Return Instructions BO-5
 BO.5.5 Jump and Jump to Subroutine Instructions BO-5
 BO.5.6 Bit Manipulation Instructions BO-6
 BO.5.7 Interrupt Mode and Reset Instructions BO-6
 BO.5.8 Input and Output Instructions BO-6
 BO.5.9 Register Pair Instructions BO-6
 BO.5.10 HD64180/Z180 Specific Instructions BO-7

 APPENDIX BP ASZ280 ASSEMBLER BP-1
 BP.1 ACKNOWLEDGMENT BP-1
 BP.2 PROCESSOR SPECIFIC DIRECTIVES BP-1
 BP.2.1 .z80 Directive BP-2
 BP.2.2 .z80u Directive BP-2
 BP.2.3 .z180 Directive BP-2
 BP.2.4 .z280 Directive BP-3
 BP.2.5 .z280n Directive BP-3
 BP.2.6 .z280p Directive BP-3
 BP.2.7 The .__.CPU. Variable BP-4
 BP.3 Z280 ADDRESSING AND INSTRUCTIONS BP-5
 BP.3.1 Registers BP-5
 BP.3.2 Condition Codes BP-5
 BP.3.3 Z280 Instructions BP-6
 BP.3.3.1 Instruction Modes BP-6
 BP.3.3.2 Argument Formats BP-7
 BP.3.3.3 8-Bit Load Group Instructions BP-8
 BP.3.3.4 16-Bit Load and Exchange Group
 Instructions BP-8
 BP.3.3.5 Block Transfer and Search Group
 Instructions BP-9
 BP.3.3.6 8-Bit Arithmetic and Logic Group BP-9
 BP.3.3.7 16-Bit Arithmetic Operation Instructions BP-10
 BP.3.3.8 Bit Manipulation, Rotate and Shift Group BP-10
 BP.3.3.9 Program Control Group Instructions BP-11
 BP.3.3.10 Program Control Group Instructions BP-11
 BP.3.3.11 CPU Control Group Instructions BP-12
 BP.3.3.12 Extended Instructions BP-12
 BP.3.4 Z280 Excution Cycles BP-12
 BP.4 Z80/HD64180 ADDRESSING AND INSTRUCTIONS BP-13
 BP.4.1 Inherent Instructions BP-13
 BP.4.2 Implicit Operand Instructions BP-14
 BP.4.3 Load Instruction BP-14
 BP.4.4 Call/Return Instructions BP-15
 BP.4.5 Jump and Jump to Subroutine Instructions BP-15
 BP.4.6 Bit Manipulation Instructions BP-15
 BP.4.7 Interrupt Mode and Reset Instructions BP-15
 BP.4.8 Input and Output Instructions BP-16
 BP.4.9 Register Pair Instructions BP-16
 BP.4.10 HD64180 Specific Instructions BP-16
 BP.4.11 Z80 Undocumented Instructions BP-17

 Page 2

 P R E F A C E

 The ASxxxx assemblers were written following the style of
 several unfinished cross assemblers found in the Digital Equip-
 ment Corporation Users Society (DECUS) distribution of the C
 programming language. The incomplete DECUS code was provided
 with no documentation as to the input syntax or the output
 format. I wish to thank the author for inspiring me to begin
 the development of this set of assemblers.

 The ASLINK program was written as a companion to the ASxxxx
 assemblers, its design and implementation was not derived from
 any other work.

 I would greatly appreciate receiving the details of any
 changes, additions, or errors pertaining to these programs and
 will attempt to incorporate any fixes or generally useful
 changes in a future update to these programs.

 Alan R. Baldwin
 Kent State University
 Physics Department
 Kent, Ohio 44242
 U.S.A.

 http://shop-pdp.net

 baldwin@shop-pdp.net

 baldwin@kent.edu
 tel: (330) 672 2531
 fax: (330) 672 2959

 Page 3

 E N D U S E R L I C E N S E A G R E E M E N T

 Copyright (C) 1989-2019 Alan R. Baldwin

 This program is free software: you can redistribute it
 and/or modify it under the terms of the GNU General Public
 License as published by the Free Software Foundation, either
 version 3 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be use-
 ful, but WITHOUT ANY WARRANTY; without even the implied war-
 ranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public
 License along with this program. If not, see
 <http://www.gnu.org/licenses/>.

 Page 4

 ASxxxx Cross Assemblers, Version 5.30, January 2019

 Submitted by Alan R. Baldwin,
 Kent State University, Kent, Ohio

 Operating System: Linux, Windows, MS-DOS
 or other supporting ANSI C.

 Source Langauge: C

 Abstract:

 The ASxxxx assemblers are a series of microprocessor assem-
 blers written in the C programming language. This collection
 contains cross assemblers for the 1802, S2650, SC/MP, MPS430,
 6100, 61860, 6500, 6800(6802/6808), 6801(6803/HD6303), 6804,
 6805, 68HC(S)08, 6809, 68HC11, 68HC(S)12, 68HC16, 740, 78K/0,
 78K/0S, 8008, 8008S, 8048(8041/8022/8021) 8051, 8085(8080),
 8X300(8X305), DS8XCXXX, AVR, EZ80, F2MC8L/FX, F8/3870,
 GameBoy(Z80), H8/3xx, Cypress PSoC(M8C), PIC, Rabbit 2000/3000,
 ST6, ST7, ST8, Z8, Z80(HD64180), and Z280 series microproces-
 sors. Each assembler has a device specific section which
 includes: (1) device description, byte order, and file exten-
 sion information, (2) a table of assembler general directives,
 special directives, assembler mnemonics and associated operation
 codes, (3) machine specific code for processing the device
 mnemonics, addressing modes, and special directives.

 The assemblers have a common device independent section which
 handles the details of file input/output, symbol table genera-
 tion, program/data areas, expression analysis, and assembler
 directive processing.

 The assemblers provide the following features: (1) alpha-
 betized, formatted symbol table listings, (2) relocatable object
 modules, (3) global symbols for linking object modules, (4) con-
 ditional assembly directives, (5) reusable local symbols, (6)
 include-file processing, and (7) a general macro processing
 facility.

 The companion program ASLINK is a relocating linker perform-
 ing the following functions: (1) bind multiple object modules
 into a single memory image, (2) resolve inter-module symbol
 references, (3) resolve undefined symbols from specified
 librarys of object modules, (4) process absolute, relative, con-
 catenated, and overlay attributes in data and program sections,
 (5) perform byte and word program-counter relative (pc or pcr)
 addressing calculations, (6) define absolute symbol values at
 link time, (7) define absolute area base address values at link

 Page 5

 time, (8) produce an Intel Hex record, Motorola S record or
 Tandy CoCo Disk Basic output file, (9) produce a map of the
 linked memory image, and (10) update the ASxxxx assembler list-
 ing files with the absolute linked addresses and data.

 The assemblers and linker have been tested using Linux and
 DJGPP, Cygwin, Symantec C/C++ V7.2, Borland Turbo C++ 3.0, Open
 Watcom V1.9, VC6, Visual Studio 2005, 2010, 2013, and 2015.
 Complete source code and documentation for the assemblers and
 linker is included with the distribution. Additionally, test
 code for each assembler and several microprocessor monitors (
 ASSIST05 for the 6805, MONDEB and ASSIST09 for the 6809, and
 BUFFALO 2.5 for the 6811) are included as working examples of
 use of these assemblers.

 CHAPTER 1

 THE ASSEMBLER

 1.1 THE ASXXXX ASSEMBLERS

 The ASxxxx assemblers are a series of microprocessor assem-
 blers written in the C programming language. Each assembler has
 a device specific section which includes:

 1. device description, byte order, and file extension in-
 formation

 2. a table of the assembler general directives, special
 device directives, assembler mnemonics and associated
 operation codes

 3. machine specific code for processing the device mnemon-
 ics, addressing modes, and special directives

 The device specific information is detailed in the appendices.

 The assemblers have a common device independent section which
 handles the details of file input/output, symbol table genera-
 tion, program/data areas, expression analysis, and assembler
 directive processing.

 The assemblers provide the following features:

 1. Command string control of assembly functions

 2. Alphabetized, formatted symbol table listing

 3. Relocatable object modules

 THE ASSEMBLER PAGE 1-2
 THE ASXXXX ASSEMBLERS

 4. Global symbols for linking object modules

 5. Conditional assembly directives

 6. Program sectioning directives

 ASxxxx assembles one or more source files into a single relo-
 catable ascii object file. The output of the ASxxxx assemblers
 consists of an ascii relocatable object file(*.rel), an assembly
 listing file(*.lst), and a symbol file(*.sym) each controlled by
 an assembler option. If both the object and listing files are
 specified then a listing to relocated listing hint file (*.hlr)
 is created as a helper for the linker to properly create the
 relocated listing file.

 1.1.1 Assembly Pass 1

 During pass 1, ASxxxx opens all source files and performs a
 rudimentary assembly of each source statement. During this pro-
 cess all symbol tables are built, program sections defined, and
 number of bytes for each assembled source line is estimated.

 At the end of pass 1 all undefined symbols may be made global
 (external) using the ASxxxx switch -g, otherwise undefined sym-
 bols will be flagged as errors during succeeding passes.

 1.1.2 Assembly Pass 2

 During pass 2 the ASxxxx assembler resolves forward refer-
 ences and determines the number of bytes for each assembled
 line. The number of bytes used by a particular assembler in-
 struction may depend upon the addressing mode, whether the in-
 struction allows multiple forms based upon the relative distance
 to the addressed location, or other factors. Pass 2 resolves
 these cases and determines the address of all symbols.

 THE ASSEMBLER PAGE 1-3
 THE ASXXXX ASSEMBLERS

 1.1.3 Assembly Pass 3

 Pass 3 by the assembler generates the listing file, the relo-
 catable output file, the listing to relocated listing hint file,
 and the symbol tables. Also during pass 3 the errors will be
 reported.

 The relocatable object file is an ascii file containing sym-
 bol references and definitions, program area definitions, and
 the relocatable assembled code, the linker ASLINK will use this
 information to generate an absolute load file (Intel, Motorola
 or Tandy CoCo Disk Basic formats).

 1.2 SOURCE PROGRAM FORMAT

 1.2.1 Statement Format

 A source program is composed of assembly-language statements.
 Each statement must be completed on one line. A line may con-
 tain a maximum of 128 characters, longer lines are truncated and
 lost.

 An ASxxxx assembler statement may have as many as four
 fields. These fields are identified by their order within the
 statement and/or by separating characters between fields. The
 general format of the ASxxxx statement is:

 [label:] Operator Operand [;Comment(s)]

 The label and comment fields are optional. The operator and
 operand fields are interdependent. The operator field may be an
 assembler directive or an assembly mnemonic. The operand field
 may be optional or required as defined in the context of the
 operator.

 ASxxxx interprets and processes source statements one at a
 time. Each statement causes a particular operation to be per-
 formed.

 THE ASSEMBLER PAGE 1-4
 SOURCE PROGRAM FORMAT

 1.2.1.1 Label Field -

 A label is a user-defined symbol which is assigned the value
 of the current location counter and entered into the user de-
 fined symbol table. The current location counter is used by
 ASxxxx to assign memory addresses to the source program state-
 ments as they are encountered during the assembly process. Thus
 a label is a means of symbolically referring to a specific
 statement.

 When a program section is absolute, the value of the current
 location counter is absolute; its value references an absolute
 memory address. Similarly, when a program section is relocat-
 able, the value of the current location counter is relocatable.
 A relocation bias calculated at link time is added to the ap-
 parent value of the current location counter to establish its
 effective absolute address at execution time. (The user can
 also force the linker to relocate sections defined as absolute.
 This may be required under special circumstances.)

 If present, a label must be the first field in a source
 statement and must be terminated by a colon (:). For example,
 if the value of the current location counter is absolute
 01F0(H), the statement:

 abcd: nop

 assigns the value 01F0(H) to the label abcd. If the location
 counter value were relocatable, the final value of abcd would be
 01F0(H)+K, where K represents the relocation bias of the program
 section, as calculated by the linker at link time.

 More than one label may appear within a single label field.
 Each label so specified is assigned the same address value. For
 example, if the value of the current location counter is
 1FF0(H), the multiple labels in the following statement are each
 assigned the value 1FF0(H):

 abcd: aq: $abc: nop

 Multiple labels may also appear on successive lines. For ex-
 ample, the statements

 abcd:
 aq:
 $abc: nop

 likewise cause the same value to be assigned to all three la-
 bels.

 THE ASSEMBLER PAGE 1-5
 SOURCE PROGRAM FORMAT

 A double colon (::) defines the label as a global symbol.
 For example, the statement

 abcd:: nop

 establishes the label abcd as a global symbol. The distinguish-
 ing attribute of a global symbol is that it can be referenced
 from within an object module other than the module in which the
 symbol is defined. References to this label in other modules
 are resolved when the modules are linked as a composite execut-
 able image.

 The legal characters for defining labels are:

 A through Z
 a through z
 0 through 9
 . (Period)
 $ (Dollar sign)
 _ (underscore)

 A label may be any length, however only the first 79
 characters are significant and, therefore must be unique among
 all labels in the source program (not necessarily among separa-
 tely compiled modules). An error code(s) (<m> or <p>) will be
 generated in the assembly listing if the first 79 characters in
 two or more labels are the same. The <m> code is caused by the
 redeclaration of the symbol or its reference by another state-
 ment. The <p> code is generated because the symbols location is
 changing on each pass through the source file.

 The label must not start with the characters 0-9, as this
 designates a reusable symbol with special attributes described
 in a later section.

 The label must not start with the sequence $$, as this
 represents the temporary radix 16 for constants.

 THE ASSEMBLER PAGE 1-6
 SOURCE PROGRAM FORMAT

 1.2.1.2 Operator Field -

 The operator field specifies the action to be performed. It
 may consist of an instruction mnemonic (op code) or an assembler
 directive.

 When the operator is an instruction mnemonic, a machine in-
 struction is generated and the assembler evaluates the addresses
 of the operands which follow. When the operator is a directive
 ASxxxx performs certain control actions or processing operations
 during assembly of the source program.

 Leading and trailing spaces or tabs in the operator field
 have no significance; such characters serve only to separate
 the operator field from the preceeding and following fields.

 An operator is terminated by a space, tab or end of line.

 1.2.1.3 Operand Field -

 When the operator is an instruction mnemonic (op code), the
 operand field contains program variables that are to be
 evaluated/manipulated by the operator.

 Operands may be expressions or symbols, depending on the
 operator. Multiple expressions used in the operand fields may
 be separated by a comma. An operand should be preceeded by an
 operator field; if it is not, the statement will give an error
 (<q> or <o>). All operands following instruction mnemonics are
 treated as expressions.

 The operand field is terminated by a semicolon when the field
 is followed by a comment. For example, in the following
 statement:

 label: lda abcd,x ;Comment field

 the tab between lda and abcd terminates the operator field and
 defines the beginning of the operand field; a comma separates
 the operands abcd and x; and a semicolon terminates the operand
 field and defines the beginning of the comment field. When no
 comment field follows, the operand field is terminated by the
 end of the source line.

 THE ASSEMBLER PAGE 1-7
 SOURCE PROGRAM FORMAT

 1.2.1.4 Comment Field -

 The comment field begins with a semicolon and extends through
 the end of the line. This field is optional and may contain any
 7-bit ascii character except null.

 Comments do not affect assembly processing or program execu-
 tion.

 1.3 SYMBOLS AND EXPRESSIONS

 This section describes the generic components of the ASxxxx
 assemblers: the character set, the conventions observed in con-
 structing symbols, and the use of numbers, operators, and ex-
 pressions.

 1.3.1 Character Set

 The following characters are legal in ASxxxx source programs:

 1. The letters A through Z. Both upper- and lower-case
 letters are acceptable. The assemblers, by default,
 are case sensitive, i.e. ABCD and abcd are not the
 same symbols. (The assemblers can be made case insen-
 sitive by using the -z command line option.)

 2. The digits 0 through 9

 3. The characters . (period), $ (dollar sign), and _ (un-
 derscore).

 4. The special characters listed in Tables 1 through 6.

 Tables 1 through 6 describe the various ASxxxx label and
 field terminators, assignment operators, operand separators, as-
 sembly, unary, binary, and radix operators.

 THE ASSEMBLER PAGE 1-8
 SYMBOLS AND EXPRESSIONS

 Table 1 Label Terminators and Assignment Operators
 --

 : Colon Label terminator.

 :: Double colon Label Terminator; defines the
 label as a global label.

 = Equal sign Direct assignment operator.

 == Global equal Direct assignment operator; de-
 fines the symbol as a global
 symbol.

 =: Local equal Direct assignment operator; de-
 fines the symbol as a local sym-
 bol.

 --

 Table 2 Field Terminators and Operand Separators
 --

 Tab Item or field terminator.

 Space Item or field terminator.

 , Comma Operand field separator.

 ; Semicolon Comment field indicator.

 --

 THE ASSEMBLER PAGE 1-9
 SYMBOLS AND EXPRESSIONS

 Table 3 Assembler Operators
 --

 # Number sign Immediate expression indicator.

 . Period Current location counter.

 (Left parenthesis Expression delimiter.

) Right parenthesis Expression delimeter.

 --

 Table 4 Unary Operators
 --

 < Left bracket <FEDC Produces the lower byte
 value of the expression.
 (DC)

 > Right bracket >FEDC Produces the upper byte
 value of the expression.
 (FE)

 + Plus sign +A Positive value of A

 - Minus sign -A Produces the negative
 (2's complement) of A.

 ~ Tilde ~A Produces the 1's comple-
 ment of A.

 ' Single quote 'D Produces the value of
 the character D.

 " Double quote "AB Produces the double byte
 value for AB.

 \ Backslash '\n Unix style characters
 \b, \f, \n, \r, \t
 or '\001 or octal byte values.

 --

 THE ASSEMBLER PAGE 1-10
 SYMBOLS AND EXPRESSIONS

 Table 5 Binary Operators
 --

 << Double 0800 << 4 Produces the 4 bit
 Left bracket left-shifted value of
 0800. (8000)

 >> Double 0800 >> 4 Produces the 4 bit
 Right bracket right-shifted value of
 0800. (0080)

 + Plus sign A + B Arithmetic Addition
 operator.

 - Minus sign A - B Arithmetic Subtraction
 operator.

 * Asterisk A * B Arithmetic Multiplica-
 tion operator.

 / Slash A / B Arithmetic Division
 operator.

 & Ampersand A & B Logical AND operator.

 | Bar A | B Logical OR operator.

 % Percent sign A % B Modulus operator.

 ^ Up arrow or A ^ B EXCLUSIVE OR operator.
 circumflex

 --

 THE ASSEMBLER PAGE 1-11
 SYMBOLS AND EXPRESSIONS

 Table 6 Temporary Radix Operators
 --

 $%, 0b, 0B Binary radix operator.

 $&, 0o, 0O, 0q, 0Q Octal radix operator.

 $#, 0d, 0D Decimal radix operator.

 $$, 0h, 0H, 0x, 0X Hexidecimal radix operator.

 Potential ambiguities arising from the use of 0b and 0d
 as temporary radix operators may be circumvented by pre-
 ceding all non-prefixed hexidecimal numbers with 00.
 Leading 0's are required in any case where the first
 hexidecimal digit is abcdef as the assembler will treat
 the letter sequence as a label.

 --

 1.3.2 User-Defined Symbols

 User-defined symbols are those symbols that are equated to a
 specific value through a direct assignment statement or appear
 as labels. These symbols are added to the User Symbol Table as
 they are encountered during assembly.

 The following rules govern the creation of user-defined symbols:

 1. Symbols can be composed of alphanumeric characters,
 dollar signs ($), periods (.), and underscores (_)
 only.

 2. The first character of a symbol must not be a number
 (except in the case of reusable symbols).

 3. The first 79 characters of a symbol must be unique. A
 symbol can be written with more than 79 legal
 characters, but the 80th and subsequent characters are
 ignored.

 THE ASSEMBLER PAGE 1-12
 SYMBOLS AND EXPRESSIONS

 4. Spaces and Tabs must not be embedded within a symbol.

 1.3.3 Reusable Symbols

 Reusable symbols are specially formatted symbols used as la-
 bels within a block of coding that has been delimited as a reus-
 able symbol block. Reusable symbols are of the form n$, where n
 is a decimal integer from 0 to 65535, inclusive. Examples of
 reusable symbols are:

 1$
 27$
 138$
 244$

 The range of a reusable symbol block consists of those state-
 ments between two normally constructed symbolic labels. Note
 that a statement of the form:

 ALPHA = EXPRESSION

 is a direct assignment statement but does not create a label and
 thus does not delimit the range of a reusable symbol block.

 Note that the range of a reusable symbol block may extend
 across program areas.

 Reusable symbols provide a convenient means of generating la-
 bels for branch instructions and other such references within
 reusable symbol blocks. Using reusable symbols reduces the pos-
 sibility of symbols with multiple definitions appearing within a
 user program. In addition, the use of reusable symbols dif-
 ferentiates entry-point labels from other labels, since reusable
 labels cannot be referenced from outside their respective symbol
 blocks. Thus, reusable symbols of the same name can appear in
 other symbol blocks without conflict. Reusable symbols require
 less symbol table space than normal symbols. Their use is
 recommended.

 The use of the same reusable symbol within a symbol block
 will generate one or both of the <m> or <p> errors.

 THE ASSEMBLER PAGE 1-13
 SYMBOLS AND EXPRESSIONS

 Example of reusable symbols:

 a: ldx #atable ;get table address
 lda #0d48 ;table length
 1$: clr ,x+ ;clear
 deca
 bne 1$

 b: ldx #btable ;get table address
 lda #0d48 ;table length
 1$: clr ,x+ ;clear
 deca
 bne 1$

 1.3.4 Current Location Counter

 The period (.) is the symbol for the current location coun-
 ter. When used in the operand field of an instruction, the
 period represents the address of the first byte of the
 instruction:

 AS: ldx #. ;The period (.) refers to
 ;the address of the ldx
 ;instruction.

 When used in the operand field of an ASxxxx directive, it
 represents the address of the current byte or word:

 QK = 0

 .word 0xFFFE,.+4,QK ;The operand .+4 in the .word
 ;directive represents a value
 ;stored in the second of the
 ;three words during assembly.

 If we assume the current value of the program counter is
 0H0200, then during assembly, ASxxxx reserves three words of
 storage starting at location 0H0200. The first value, a hex-
 idecimal constant FFFE, will be stored at location 0H0200. The
 second value represented by .+4 will be stored at location
 0H0202, its value will be 0H0206 (= 0H0202 + 4). The third
 value defined by the symbol QK will be placed at location
 0H0204.

 At the beginning of each assembly pass, ASxxxx resets the lo-
 cation counter. Normally, consecutive memory locations are
 assigned to each byte of object code generated. However, the

 THE ASSEMBLER PAGE 1-14
 SYMBOLS AND EXPRESSIONS

 value of the location counter can be changed through a direct
 assignment statement of the following form:

 . = . + expression

 The new location counter can only be specified relative to
 the current location counter. Neglecting to specify the current
 program counter along with the expression on the right side of
 the assignment operator will generate the <.> error. (Absolute
 program areas may use the .org directive to specify the absolute
 location of the current program counter.)

 The following coding illustrates the use of the current location
 counter:

 .area CODE1 (ABS) ;program area CODE1
 ;is ABSOLUTE

 .org 0H100 ;set location to
 ;0H100 absolute

 num1: ldx #.+0H10 ;The label num1 has
 ;the value 0H100.
 ;X is loaded with
 ;0H100 + 0H10

 .org 0H130 ;location counter
 ;set to 0H130

 num2: ldy #. ;The label num2 has
 ;the value 0H130.
 ;Y is loaded with
 ;value 0H130.

 .area CODE2 (REL) ;program area CODE2
 ;is RELOCATABLE

 . = . + 0H20 ;Set location counter
 ;to relocatable 0H20 of
 ;the program section.

 num3: .word 0 ;The label num3 has
 ;the value
 ;of relocatable 0H20.

 . = . + 0H40 ;will reserve 0H40
 ;bytes of storage as will

 THE ASSEMBLER PAGE 1-15
 SYMBOLS AND EXPRESSIONS

 .blkb 0H40 ;or
 .blkw 0H20

 The .blkb and .blkw directives are the preferred methods of
 allocating space.

 1.3.5 Numbers

 ASxxxx assumes that all numbers in the source program are to
 be interpreted in decimal radix unless otherwise specified. The
 .radix directive may be used to specify the default as octal,
 decimal, or hexidecimal. Individual numbers can be designated
 as binary, octal, decimal, or hexidecimal through the temporary
 radix prefixes shown in table 6.

 Negative numbers must be preceeded by a minus sign; ASxxxx
 translates such numbers into two's complement form. Positive
 numbers may (but need not) be preceeded by a plus sign.

 Numbers are always considered to be absolute values, therefor
 they are never relocatable.

 1.3.6 Terms

 A term is a component of an expression and may be one of the
 following:

 1. A number.

 2. A symbol:
 1. A period (.) specified in an expression causes the
 current location counter to be used.
 2. A User-defined symbol.
 3. An undefined symbol is assigned a value of zero and
 inserted in the User-Defined symbol table as an un-
 defined symbol.

 3. A single quote followed by a single ascii character, or
 a double quote followed by two ascii characters.

 4. An expression enclosed in parenthesis. Any expression
 so enclosed is evaluated and reduced to a single term
 before the remainder of the expression in which it
 appears is evaluated. Parenthesis, for example, may be

 THE ASSEMBLER PAGE 1-16
 SYMBOLS AND EXPRESSIONS

 used to alter the left-to-right evaluation of expres-
 sions, (as in A*B+C versus A*(B+C)), or to apply a un-
 ary operator to an entire expression (as in -(A+B)).

 5. A unary operator followed by a symbol or number.

 1.3.7 Expressions

 Expressions are combinations of terms joined together by
 binary operators. Expressions reduce to a value. The evalua-
 tion of an expression includes the determination of its attri-
 butes. A resultant expression value may be one of three types
 (as described later in this section): relocatable, absolute,
 and external.

 Expressions are evaluate with an operand hierarchy as follows:

 * / % multiplication,
 division, and
 modulus first.

 + - addition and
 subtraction second.

 << >> left shift and
 right shift third.

 ^ exclusive or fourth.

 & logical and fifth.

 | logical or last

 except that unary operators take precedence over binary
 operators.

 A missing or illegal operator terminates the expression
 analysis, causing error codes <o> and/or <q> to be generated
 depending upon the context of the expression itself.

 At assembly time the value of an external (global) expression
 is equal to the value of the absolute part of that expression.
 For example, the expression external+4, where 'external' is an
 external symbol, has the value of 4. This expression, however,

 THE ASSEMBLER PAGE 1-17
 SYMBOLS AND EXPRESSIONS

 when evaluated at link time takes on the resolved value of the
 symbol 'external', plus 4.

 Expressions, when evaluated by ASxxxx, are one of three
 types: relocatable, absolute, or external. The following dis-
 tinctions are important:

 1. An expression is relocatable if its value is fixed re-
 lative to the base address of the program area in which
 it appears; it will have an offset value added at link
 time. Terms that contain labels defined in relocatable
 program areas will have a relocatable value; simi-
 larly, a period (.) in a relocatable program area,
 representing the value of the current program location
 counter, will also have a relocatable value.

 2. An expression is absolute if its value is fixed. An
 expression whose terms are numbers and ascii characters
 will reduce to an absolute value. A relocatable ex-
 pression or term minus a relocatable term, where both
 elements being evaluated belong to the same program
 area, is an absolute expression. This is because every
 term in a program area has the same relocation bias.
 When one term is subtracted from the other the reloca-
 tion bias is zero.

 3. An expression is external (or global) if it contains a
 single global reference (plus or minus an absolute ex-
 pression value) that is not defined within the current
 program. Thus, an external expression is only par-
 tially defined following assembly and must be resolved
 at link time.

 1.4 GENERAL ASSEMBLER DIRECTIVES

 An ASxxxx directive is placed in the operator field of the
 source line. Only one directive is allowed per source line.
 Each directive may have a blank operand field or one or more
 operands. Legal operands differ with each directive.

 THE ASSEMBLER PAGE 1-18
 GENERAL ASSEMBLER DIRECTIVES

 1.4.1 .module Directive

 Format:

 .module name

 The .module directive causes the name to be included in the
 assemblers output file as an identifier for this particular ob-
 ject module. The name may be from 1 to 79 characters in length.
 The name may not have any embedded white space (spaces or tabs).
 Only one identifier is allowed per assembled module. The main
 use of this directive is to allow the linker to report a
 modules' use of undefined symbols. At link time all undefined
 symbols are reported and the modules referencing them are
 listed.

 1.4.2 .title Directive

 Format:

 .title string

 The .title directive provides a character string to be placed
 on the second line of each page during listing. The string be-
 gins with the first non white space character (after any space
 or tab) and ends with the end of the line.

 1.4.3 .sbttl Directive

 Format:

 .sbttl string

 The .sbttl directive provides a character string to be placed
 on the third line of each page during listing. The string be-
 gins with the first non white space character (after any space
 or tab) and ends with the end of the line.

 THE ASSEMBLER PAGE 1-19
 GENERAL ASSEMBLER DIRECTIVES

 1.4.4 .list and .nlist Directives

 Format:

 .list ;Basic .list

 .list expr ;with expression

 .list (arg1,arg2,...,argn) ;with sublist options

 .nlist ;Basic .nlist

 .nlist expr ;with expression

 .nlist (arg1,arg2,...,argn) ;with sublist options

 The .list and .nlist directives control the listing output to
 the .lst file. The directives have the following sublist
 options:

 err - errors
 loc - program location
 bin - binary output
 eqt - symbol or .if evaluation
 cyc - opcode cycle count
 lin - source line number
 src - source line text
 pag - pagination
 lst - .list/.nlist line listing
 md - macro definition listing
 me - macro expansion listing
 meb - macro expansion binary listing

 ! - sets the listing mode to
 !(.list) or !(.nlist) before
 applying the sublist options

 The 'normal' listing mode .list is the combination of err, loc,
 bin, eqt, cyc, lin, src, pag, lst, and md enabled with me and
 meb disabled. The 'normal' listing mode .nlist has all sublist
 items disabled. When specifying sublist options the option list
 must be enclosed within parenthesis and multiple options
 seperated by commas.

 The NOT option, !, is used to set the listing mode to the op-
 posite of the .list or .nlist directive before applying the
 sublist options. For example:

 THE ASSEMBLER PAGE 1-20
 GENERAL ASSEMBLER DIRECTIVES

 .nlist (!) is equivalent to .list and
 .list (!) is equivalent to .nlist
 any additional options will
 be applied normally

 Normal .list/.nlist processing is disabled within false con-
 ditional blocks. However, the .list/.nlist with an expression
 can override this behavior if the expression has a non zero
 value.

 Examples of listing options:

 .list (meb) ; macro processing lists only
 ; generated binary and location

 .list (me) ; listing options are enabled
 ; during macro processing

 .nlist (src) ; .nlist src lines not listed

 .nlist (!,lst) ; list all except .nlist

 .nlist ; combination lists only
 .list (src) ; the source line

 .list (!,src) ; list only the source line

 .list 1 ; enable listing even within
 ; a FALSE conditional block

 1.4.5 .page Directive

 Format:

 .page

 The .page directive causes a page ejection with a new heading
 to be printed. The new page occurs after the next line of the
 source program is processed, this allows an immediately follow-
 ing .sbttl directive to appear on the new page. The .page
 source line will not appear in the file listing. Paging may be
 disabled by invoking the -p directive or by using the directive:

 .nlist (pag)

 THE ASSEMBLER PAGE 1-21
 GENERAL ASSEMBLER DIRECTIVES

 If the .page directive is followed by a non zero constant or
 an expression that evaluates to a non zero value then pagination
 will be enabled within a false condition range to allow extended
 textual information to be incorporated in the source program
 with out the need to use the comment delimiter (;):

 .if 0

 .page 1 ;Enable pagination within 'if' block.
 This text will be bypassed during assembly
 but appear in the listing file.
 .
 .
 .

 .endif

 1.4.6 .msg Directive

 Format:

 .msg /string/ or

 .msg ^/string/

 where: string represents a text string. The string is printed
 to the console during the final assembly pass.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .msg
 directive will give the <q> error.

 The .msg directive is useful to report assembly status or
 other information during the assembly process.

 THE ASSEMBLER PAGE 1-22
 GENERAL ASSEMBLER DIRECTIVES

 1.4.7 .error Directive

 Format:

 .error exp

 where: exp represents an absolute expression. If the
 evaluation of the expression results in a non
 zero value then an <e> error is reported and the
 text line is listed in the generated error.

 The .error directive is useful to report configuration or
 value errors during the assembly process. (The .error directive
 is identical in function to the .assume directive, just perhaps
 more descriptive.)

 1.4.8 .byte, .db, and .fcb Directives

 Format:

 .byte exp ;Stores the binary value
 .db exp ;of the expression in the
 .fcb exp ;next byte.

 .byte exp1,exp2,expn ;Stores the binary values
 .db exp1,exp2,expn ;of the list of expressions
 .fcb exp1,exp2,expn ;in successive bytes.

 where: exp, represent expressions that will be
 exp1, truncated to 8-bits of data.
 . Each expression will be calculated,
 . the high-order byte will be truncated.
 . Multiple expressions must be
 expn separated by commas.

 The .byte, .db, or .fcb directives are used to generate suc-
 cessive bytes of binary data in the object module.

 THE ASSEMBLER PAGE 1-23
 GENERAL ASSEMBLER DIRECTIVES

 1.4.9 .word, .dw, and .fdb Directives

 Format:

 .word exp ;Stores the binary value
 .dw exp ;of the expression in
 .fdb exp ;the next word.

 .word exp1,exp2,expn ;Stores the binary values
 .dw exp1,exp2,expn ;of the list of expressions
 .fdb exp1,exp2,expn ;in successive words.

 where: exp, represent expressions that will occupy two
 exp1, bytes of data. Each expression will be
 . calculated as a 16-bit word expression.
 . Multiple expressions must be
 expn separated by commas.

 The .word, .dw, or .fdb directives are used to generate suc-
 cessive words of binary data in the object module.

 1.4.10 .3byte and .triple Directives

 Format:

 .3byte exp ;Stores the binary value
 .triple exp ;of the expression in
 ;the next triple (3 bytes).

 .3byte exp1,exp2,expn ;Stores the binary values
 .triple exp1,exp2,expn ;of the list of expressions
 ;in successive triples
 ;(3 bytes).

 where: exp, represent expressions that will occupy three
 exp1, bytes of data. Each expression will be
 . calculated as a 24-bit word expression.
 . Multiple expressions must be
 expn separated by commas.

 The .3byte or .triple directive is used to generate succes-
 sive triples of binary data in the object module. (These direc-
 tives are only available in assemblers supporting 24-bit
 addressing.)

 THE ASSEMBLER PAGE 1-24
 GENERAL ASSEMBLER DIRECTIVES

 1.4.11 .4byte and .quad Directive

 Format:

 .4byte exp ;Stores the binary value
 .quad exp ;of the expression in
 ;the next quad (4 bytes).

 .4byte exp1,exp2,expn ;Stores the binary values
 .quad exp1,exp2,expn ;of the list of expressions
 ;in successive quads
 ;(4 bytes).

 where: exp, represent expressions that will occupy three
 exp1, bytes of data. Each expression will be
 . calculated as a 32-bit word expression.
 . Multiple expressions must be
 expn separated by commas.

 The .4byte or .quad directive is used to generate successive
 quads of binary data in the object module. (These directives
 are only available in assemblers supporting 32-bit addressing.)

 1.4.12 .blkb, .ds, .rmb, and .rs Directives

 Format:

 .blkb N ;reserve N bytes of space
 .ds N ;reserve N bytes of space
 .rmb N ;reserve N bytes of space
 .rs N ;reserve N bytes of space

 The .blkb, .ds, .rmb, and .rs directives reserve byte blocks
 in the object module;

 1.4.13 .blkw, .blk3, and .blk4 Directives

 Format:

 .blkw N ;reserve N words of space
 .blk3 N ;reserve N triples of space
 .blk4 N ;reserve N quads of space

 The .blkw directive reserves word blocks; the .blk3 reserves
 3 byte blocks(available in assemblers supporting 24-bit
 addressing); the .blk4 reserves 4 byte blocks (available in
 assemblers supporting 32-bit addressing).

 THE ASSEMBLER PAGE 1-25
 GENERAL ASSEMBLER DIRECTIVES

 1.4.14 .ascii, .str, and .fcc Directives

 Format:

 .ascii /string/ or

 .ascii ^/string/

 .fcc /string/ or

 .fcc ^/string/

 .str /string/ or

 .str ^/string/

 where: string is a string of printable ascii characters.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .ascii
 directive will give the <q> error.

 The .ascii, .fcc, and .str directives place one binary byte of
 data for each character in the string into the object module.

 1.4.15 .ascis and .strs Directives

 Format:

 .ascis /string/ or

 .ascis ^/string/

 .strs /string/ or

 .strs ^/string/

 where: string is a string of printable ascii characters.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the

 THE ASSEMBLER PAGE 1-26
 GENERAL ASSEMBLER DIRECTIVES

 delimiting characters do not match, the .ascis
 and .strs directives will give the <q> error.

 The .ascis and .strs directives place one binary byte of data
 for each character in the string into the object module. The
 last character in the string will have the high order bit set.

 1.4.16 .asciz and .strz Directives

 Format:

 .asciz /string/ or

 .asciz ^/string/

 .strz /string/ or

 .strz ^/string/

 where: string is a string of printable ascii characters.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .asciz
 and .strz directive will give the <q> error.

 The .asciz and .strz directives place one binary byte of data
 for each character in the string into the object module. Fol-
 lowing all the character data a zero byte is inserted to ter-
 minate the character string.

 THE ASSEMBLER PAGE 1-27
 GENERAL ASSEMBLER DIRECTIVES

 1.4.17 .assume Directive

 Format:

 .assume exp

 where: exp represents an absolute expression. If the
 evaluation of the expression results in a non
 zero value then an <e> error is reported and the
 text line is listed in the generated error.

 The .assume directive is useful to check assumptions about
 assembler values. (The .assume directive is identical in func-
 tion to the .error directive, just perhaps more descriptive.)

 1.4.18 .radix Directive

 Format:

 .radix character

 where: character represents a single character specifying the
 default radix to be used for succeeding numbers. The
 character may be any one of the following:

 B,b Binary

 O,o Octal
 Q,q

 D,d Decimal
 'blank'

 H,h Hexidecimal
 X,x

 THE ASSEMBLER PAGE 1-28
 GENERAL ASSEMBLER DIRECTIVES

 1.4.19 .even Directive

 Format:

 .even

 The .even directive ensures that the current location counter
 contains an even boundary value by adding 1 if the current loca-
 tion is odd.

 1.4.20 .odd Directive

 Format:

 .odd

 The .odd directive ensures that the current location counter
 contains an odd boundary value by adding one if the current lo-
 cation is even.

 1.4.21 .bndry Directive

 Format:

 .bndry n

 If the current location is not an integer multiple of n then
 the location counter is increased to the next integer multiple
 of n.

 As an example:

 .bndry 4

 changes the current location to be at a multiple of 4, a 4-byte
 boundary.

 The boundary specifications are propagated to the linker as a
 boundary modulus, ie the smallest common boundary for all .odd,
 .even, and .bndry directives contained within the area. A boun-
 dary value of 1 is equivalent to .odd and a boundary value of 2
 is equivalent to .even. Because areas are always assembled with
 an initial address of 0, an even address, both .odd and .even
 are modulus 2 boundaries.

 As an example, suppose there are two sections: a CODE sec-
 tion and a DATA section. The program code is written so that

 THE ASSEMBLER PAGE 1-29
 GENERAL ASSEMBLER DIRECTIVES

 the data associated with this section of the program code fol-
 lows immediately.

 .area CODE
 ; Subroutine 1 Code
 ; Uses data having a boundary of 6

 .area DATA
 ; Subroutine 1 Data
 .bndry 6
 .word 1, 2, 3

 ...

 .area CODE
 ; Subroutine 2 Code
 ; Uses data having a boundary of 8

 .area DATA
 ; Subroutine 2 Data
 .bndry 8
 .word 1, 2, 3, 4,

 Since the CODE and DATA sections are assembled during a sin-
 gle assembly (also applies to include files) the the assembler
 compiles all CODE segments as a single area segment. The assem-
 bler also compiles all the DATA segments as a single area seg-
 ment which has two .bndry directives and will have a boundary
 modulus of 24. 24 is the smallest boundary divisible by 6 and 8
 with no remainder. When the assembled file is linked the loca-
 tion of the data in the DATA area will be offset to an address
 which has a boundary modulus of 24.

 When multiple files containing the same area names (projects
 with multiple independently compiled files or library files) are
 linked together each area segment will be offset to match the
 segments boundary modulus.

 Boundary specifications will also be preserved when an area
 base address is specified with the -b linker option and/or the
 area is placed within a bank.

 THE ASSEMBLER PAGE 1-30
 GENERAL ASSEMBLER DIRECTIVES

 1.4.22 .area Directive

 Format:

 .area name [(options)]

 where: name represents the symbolic name of the program sec-
 tion. This name may be the same as any
 user-defined symbol or bank as the area names
 are independent of all symbols, labels, and
 banks.

 options specify the type of program or data area:
 ABS absolute (automatically invokes OVR)
 REL relocatable
 OVR overlay
 CON concatenate
 NOPAG non-paged area
 PAG paged area

 options specify a code or data segment:
 CSEG Code segment
 DSEG Data segment

 option specifies the data area bank:
 BANK Named collection of areas

 The .area directive provides a means of defining and separat-
 ing multiple programming and data sections. The name is the
 area label used by the assembler and the linker to collect code
 from various separately assembled modules into one section. The
 name may be from 1 to 79 characters in length.

 The options are specified within parenthesis and separated by
 commas as shown in the following example:

 .area TEST (REL,CON) ;This section is relocatable
 ;and concatenated with other
 ;sections of this program area.

 .area DATA (REL,OVR) ;This section is relocatable
 ;and overlays other sections
 ;of this program area.

 .area SYS (ABS,OVR) ;(CON not allowed with ABS)
 ;This section is defined as
 ;absolute. Absolute sections
 ;are always overlayed with

 THE ASSEMBLER PAGE 1-31
 GENERAL ASSEMBLER DIRECTIVES

 ;other sections of this program
 ;area.

 .area PAGE (PAG) ;This is a paged section. The
 ;section must be on a 256 byte
 ;boundary and its length is
 ;checked by the linker to be
 ;no larger than 256 bytes.
 ;This is useful for direct page
 ;areas.

 The default area type is REL|CON; i.e. a relocatable sec-
 tion which is concatenated with other sections of code with the
 same area name. The ABS option indicates an absolute area. The
 OVR and CON options indicate if program sections of the same
 name will overlay each other (start at the same location) or be
 concatenated with each other (appended to each other).

 The area can be specified as either a code segment, CSEG, or
 a data segment, DSEG. The CSEG and DSEG descriptors are useful
 when the microprocessor code and data unit allocations are
 unequal: e.g. the executable code uses an allocation of 2
 bytes for each instruction and is addressed at an increment of 1
 for every instruction, and the data uses an allocation of 1 byte
 for each element and is addressed at an increment of 1 for each
 data byte. The allocation units are defined by the architecture
 of the particular microprocessor.

 The .area directive also provides a means of specifying the
 bank this area is associated with. All areas associated with a
 particular bank are combined at link time into a block of
 code/data.

 The CSEG, DSEG, and BANK options are specified within the
 parenthesis as shown in the following examples:

 .area C_SEG (CSEG,BANK=C1)
 ;This is a code section
 ;and is included in bank C1
 .area D_SEG (DSEG,BANK=D1)
 ;This is a data section
 ;and is included in bank D1.

 Multiple invocations of the .area directive with the same
 name must specify the same options or leave the options field
 blank, this defaults to the previously specified options for
 this program area.

 THE ASSEMBLER PAGE 1-32
 GENERAL ASSEMBLER DIRECTIVES

 The ASxxxx assemblers automatically provide two program
 sections:

 '_CODE' This is the default code/data area.
 This program area is of type
 (REL,CON,CSEG).

 '_DATA' This is the default optional data area.
 This program area is of type
 (REL,CON,DSEG).

 The .area names and options are never case sensitive.

 1.4.23 .bank Directive

 Format:

 .bank name [(options)]

 where: name represents the symbolic name of the bank sec-
 tion. This name may be the same as any
 user-defined symbol or area as the bank names
 are independent of all symbols, labels, and
 areas. The name may be from 1 to 79 characters
 in length.

 options specify the parameters of the bank:
 BASE base address of bank
 SIZE maximum size of bank
 FSFX file suffix for this bank
 MAP NOICE mapping

 The .bank directive allows an arbitrary grouping of program
 and/or data areas to be communicated to the linker. The bank
 parameters are all optional and are described as follows:

 1. BASE, the starting address of the bank (default is 0)
 may be defined. This address can be overridden by us-
 ing the linker -b option for the first area within the
 bank. The bank address is always specified in 'byte'
 addressing. A first area which is not 'byte' addressed
 (e.g. a processor addressed by a 'word' of 2 or more
 bytes) has the area address scaled to begin at the
 'byte' address.

 THE ASSEMBLER PAGE 1-33
 GENERAL ASSEMBLER DIRECTIVES

 2. SIZE, the maximum length of the bank specified in
 bytes. The size is always specified in terms of bytes.

 3. FSFX, the file suffix to be used by the linker for this
 bank. The suffix may not contain embedded white space.

 4. MAP, NOICE mapping parameter for this bank of
 code/data.

 The options are specified within parenthesis and separated by
 commas as shown in the following example:

 .BANK C1 (BASE=0x0100,SIZE=0x1000,FSFX=_C1)
 ;This bank starts at 0x0100,
 ;has a maximum size of 0x1000,
 ;and is to be placed into
 ;a file with a suffix of _C1

 The parameters must be absolute (external symbols are not al-
 lowed.)

 1.4.24 .org Directive

 Format:

 .org exp

 where: exp is an absolute expression that becomes the cur-
 rent location counter.

 The .org directive is valid only in an absolute program section
 and will give a <q> error if used in a relocatable program area.
 The .org directive specifies that the current location counter
 is to become the specified absolute value.

 THE ASSEMBLER PAGE 1-34
 GENERAL ASSEMBLER DIRECTIVES

 1.4.25 .globl Directive

 Format:

 .globl sym1,sym2,...,symn

 where: sym1, represent legal symbolic names.
 sym2,... When multiple symbols are specified,
 symn they are separated by commas.

 A .globl directive may also have a label field and/or a com-
 ment field.

 The .globl directive is provided to export (and thus provide
 linkage to) symbols not otherwise defined as global symbols
 within a module. In exporting global symbols the directive
 .globl J is similar to:

 J == expression or J::

 Because object modules are linked by global symbols, these
 symbols are vital to a program. All internal symbols appearing
 within a given program must be defined at the end of pass 1 or
 they will be considered undefined. The assembly directive (-g)
 can be invoked to make all undefined symbols global at the end
 of pass 1.

 The .globl directive and == construct can be overridden by a
 following .local directive.

 NOTE

 The ASxxxx assemblers use the last occurring symbol
 specification in the source file(s) as the type shown
 in the symbol table and output to the .rel file.

 THE ASSEMBLER PAGE 1-35
 GENERAL ASSEMBLER DIRECTIVES

 1.4.26 .local Directive

 Format:

 .local sym1,sym2,...,symn

 where: sym1, represent legal symbolic names.
 sym2,... When multiple symbols are specified,
 symn they are separated by commas.

 A .local directive may also have a label field and/or a com-
 ment field.

 The .local directive is provided to define symbols that are
 local to the current assembly process. Local symbols are not
 effected by the assembler option -a (make all symbols global).
 In defining local symbols the directive .local J is similar to:

 J =: expression

 The .local directive and the =: construct are useful in de-
 fining symbols and constants within a header or definition file
 that contains many symbols specific to the current assembly pro-
 cess that should not be exported into the .rel output file. A
 typical usage is in the definition of SFRs (Special Function
 Registers) for a microprocessor.

 The .local directive and =: construct can be overridden by a
 following .globl directive.

 NOTE

 The ASxxxx assemblers use the last occurring symbol
 specification in the source file(s) as the type shown
 in the symbol table and output to the .rel file.

 THE ASSEMBLER PAGE 1-36
 GENERAL ASSEMBLER DIRECTIVES

 1.4.27 .equ, .gblequ, and .lclequ Directives

 Format:

 sym1 .equ expr ; equivalent to sym1 = expr
 sym2 .gblequ expr ; equivalent to sym2 == expr
 sym3 .lclequ expr ; equivalent to sym3 =: expr

 or

 .equ sym1, expr ; equivalent to sym1 = expr
 .gblequ sym2, expr ; equivalent to sym2 == expr
 .lclequ sym3, expr ; equivalent to sym3 =: expr

 These alternate forms of equivalence are provided for user
 convenience.

 1.4.28 .if, .else, and .endif Directives

 Format:

 .if expr
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The range of true condition will be processed if the expres-
 sion 'expr' is not zero (i.e. true) and the range of false con-
 dition will be processed if the expression 'expr' is zero (i.e
 false). The range of true condition is optional as is the .else
 directive and the range of false condition. The following are
 all valid .if/.else/.endif constructions:

 .if A-4 ;evaluate A-4
 .byte 1,2 ;insert bytes if A-4 is
 .endif ;not zero

 .if K+3 ;evaluate K+3
 .else

 THE ASSEMBLER PAGE 1-37
 GENERAL ASSEMBLER DIRECTIVES

 .byte 3,4 ;insert bytes if K+3
 .endif ;is zero

 .if J&3 ;evaluate J masked by 3
 .byte 12 ;insert this byte if J&3
 .else ;is not zero
 .byte 13 ;insert this byte if J&3
 .endif ;is zero

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 1.4.29 .iff, .ift, and .iftf Directives

 Format:

 .if expr ;'if' range Condition is
 ;TRUE when expr is not zero
 .ift ;}
 . ;} range of true condition ;}
 .iff ;} if
 . ;} range of false condition ;} block
 .iftf ;}
 . ;} unconditional range ;}
 .else ;'else' range Condition is
 ;TRUE when expr is zero
 .ift ;}
 . ;} range of true condition ;}
 .iff ;} else
 . ;} range of false condition ;} block
 .iftf ;}
 . ;} unconditional range ;}
 .endif

 The subconditional assembly directives may be placed within
 conditional assembly blocks to indicate:

 1. The assembly of an alternate body of code when
 the condition of the block tests false.

 2. The assembly of non-contiguous body of code
 within the conditional assembly block,
 depending upon the result of the conditional

 THE ASSEMBLER PAGE 1-38
 GENERAL ASSEMBLER DIRECTIVES

 test in entering the block.

 3. The unconditional assembly of a body of code
 within a conditional assembly block.

 The use of the .iff, .ift, and .iftf directives makes the use of
 the .else directive redundant.

 Note that the implementation of the .else directive causes
 the .if tested condition to be complemented. The TRUE and FALSE
 conditions are determined by the .if/.else conditional state.

 All .if/.else/.endif directives are limited to a maximum
 nesting of 10 levels.

 The use of the .iff, .ift, or .iftf directives outside of a
 conditional block results in a <i> error code.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 1.4.30 .ifxx Directives

 Additional conditional directives are available to test the
 value of an evaluated expression:

 .ifne expr ; true if expr != 0
 .ifeq expr ; true if expr == 0
 .ifgt expr ; true if expr > 0
 .iflt expr ; true if expr < 0
 .ifge expr ; true if expr >= 0
 .ifle expr ; true if expr <= 0

 Format:

 .ifxx expr
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 THE ASSEMBLER PAGE 1-39
 GENERAL ASSEMBLER DIRECTIVES

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The range of true condition will be processed if the expres-
 sion 'expr' is not zero (i.e. true) and the range of false con-
 dition will be processed if the expression 'expr' is zero (i.e
 false). The range of true condition is optional as is the .else
 directive and the range of false condition. The following are
 all valid .ifxx/.else/.endif constructions:

 .ifne A-4 ;evaluate A-4
 .byte 1,2 ;insert bytes if A-4 is
 .endif ;not zero

 .ifeq K+3 ;evaluate K+3
 .byte 3,4 ;insert bytes if K+3
 .endif ;is zero

 .ifne J&3 ;evaluate J masked by 3
 .byte 12 ;insert this byte if J&3
 .else ;is not zero
 .byte 13 ;insert this byte if J&3
 .endif ;is zero

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 1.4.31 .ifdef Directive

 Format:

 .ifdef sym
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 THE ASSEMBLER PAGE 1-40
 GENERAL ASSEMBLER DIRECTIVES

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The range of true condition will be processed if the symbol
 'sym' has been defined with a .define directive or 'sym' is a
 variable with an assigned value else the false range will be
 processed. The range of true condition is optional as is the
 .else directive and the range of false condition. The following
 are all valid .ifdef/.else/.endif constructions:

 .ifdef sym$1 ;lookup symbol sym$1
 .byte 1,2 ;insert bytes if sym$1
 .endif ;is defined or
 ;assigned a value

 .ifdef sym$2 ;lookup symbol sym$2
 .else
 .byte 3,4 ;insert bytes if sym$1
 .endif ;is not defined and
 ;not assigned a value

 .ifdef sym$3 ;lookup symbol sym$3
 .byte 12 ;insert this byte if sym$3
 .else ;is defined/valued
 .byte 13 ;insert this byte if sym$3
 .endif ;is not defined/valued

 Note that the default assembler configuration of case sensitive
 means the testing for a defined symbol is also case sensitive.

 All .if/.else/.endif directives are limited to a maximum
 nesting of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 THE ASSEMBLER PAGE 1-41
 GENERAL ASSEMBLER DIRECTIVES

 1.4.32 .ifndef Directive

 Format:

 .ifndef sym
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the condition test.

 The range of true condition will be processed if the symbol
 'sym' is not defined by a .define directive and a variable 'sym'
 has not been assigned a value else the range of false condition
 will be processed. The range of true condition is optional as
 is the .else directive and the range of false condition. The
 following are all valid .ifndef/.else/.endif constructions:

 .ifndef sym$1 ;lookup symbol sym$1
 .byte 1,2 ;insert bytes if sym$1 is
 .endif ;not defined and
 ;not assigned a value

 .ifndef sym$2 ;lookup symbol sym$2
 .else
 .byte 3,4 ;insert bytes if sym$1
 .endif ;is defined or
 ;is assigned a value

 .ifndef sym$3 ;lookup symbol sym$3
 .byte 12 ;insert this byte if sym$3
 .else ;is not defined/valued
 .byte 13 ;insert this byte if sym$3
 .endif ;is defined/valued

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 THE ASSEMBLER PAGE 1-42
 GENERAL ASSEMBLER DIRECTIVES

 1.4.33 .ifb Directive

 Format:

 .ifb sym
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The conditional .ifb is most useful when used in macro de-
 finitions to determine if the argument is blank. The range of
 true condition will be processed if the symbol 'sym' is blank.
 The range of true condition is optional as is the .else direc-
 tive and the range of false condition. The following are all
 valid .ifb/.else/.endif constructions:

 .ifb sym$1 ;argument is not blank
 .byte 1,2 ;insert bytes if argument
 .endif ;is blank

 .ifb sym$2 ;argument is not blank
 .else
 .byte 3,4 ;insert bytes if argument
 .endif ;is not blank

 .ifb ;argument is blank
 .byte 12 ;insert this byte if
 .else ;argument is blank
 .byte 13 ;insert this byte if
 .endif ;argument not blank

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 THE ASSEMBLER PAGE 1-43
 GENERAL ASSEMBLER DIRECTIVES

 1.4.34 .ifnb Directive

 Format:

 .ifnb sym
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The conditional .ifnb is most useful when used in macro de-
 finitions to determine if the argument is not blank. The range
 of true condition will be processed if the symbol 'sym' is not
 blank. The range of true condition is optional as is the .else
 directive and the range of false condition. The following are
 all valid .ifnb/.else/.endif constructions:

 .ifnb sym$1 ;argument is not blank
 .byte 1,2 ;insert bytes if argument
 .endif ;is not blank

 .ifnb sym$2 ;argument is not blank
 .else
 .byte 3,4 ;insert bytes if argument
 .endif ;is blank

 .ifnb ;argument is blank
 .byte 12 ;insert this byte if
 .else ;argument is not blank
 .byte 13 ;insert this byte if
 .endif ;argument is blank

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 THE ASSEMBLER PAGE 1-44
 GENERAL ASSEMBLER DIRECTIVES

 1.4.35 .ifidn Directive

 Format:

 .ifidn sym$1,sym$2
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The conditional .ifidn is most useful when used in macro de-
 finitions to determine if the arguments are identical. The
 range of true condition will be processed if the symbol 'sym$1'
 is idendical to 'sym$2' (i.e. the character strings for sym$1
 and sym$2 are the same consistent with the case sensitivity
 flag). When this if statement occurs inside a macro where an
 argument substitution may be blank then an argument should be
 delimited with the form /symbol/ for each symbol. The range of
 true condition is optional as is the .else directive and the
 range of false condition. The following are all valid
 .ifidn/.else/.endif constructions:

 .ifidn sym$1,sym$1 ;arguments are the same
 .byte 1,2 ;insert bytes if arguments
 .endif ;are the sane

 .ifidn sym$1,sym$2 ;arguments are not the same
 .else
 .byte 3,4 ;insert bytes if arguments
 .endif ;are not the same

 .ifidn sym$3,sym$3 ;arguments are the same
 .byte 12 ;insert this byte if
 .else ;arguments are the same
 .byte 13 ;insert this byte if
 .endif ;arguments are not the same

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 THE ASSEMBLER PAGE 1-45
 GENERAL ASSEMBLER DIRECTIVES

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 1.4.36 .ifdif Directive

 Format:

 .ifdif sym$1,sym$2
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the test condition.

 The conditional .ifdif is most useful when used in macro de-
 finitions to determine if the arguments are different. The
 range of true condition will be processed if the symbol 'sym$1'
 is different from 'sym$2' (i.e. the character strings for sym$1
 and sym$2 are the not the same consistent with the case sensi-
 tivity flag). When this if statement occurs inside a macro
 where an argument substitution may be blank then an argument
 should be delimited with the form /symbol/ for each symbol. The
 range of true condition is optional as is the .else directive
 and the range of false condition. The following are all valid
 .ifdif/.else/.endif constructions:

 .ifdif sym$1,sym$2 ;arguments are different
 .byte 1,2 ;insert bytes if arguments
 .endif ;are different

 .ifdif sym$1,sym$1 ;arguments are identical
 .else
 .byte 3,4 ;insert bytes if arguments
 .endif ;are different

 .ifdif sym$1,sym$3 ;arguments are different
 .byte 12 ;insert this byte if
 .else ;arguments are different
 .byte 13 ;insert this byte if
 .endif ;arguments are identical

 THE ASSEMBLER PAGE 1-46
 GENERAL ASSEMBLER DIRECTIVES

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 1.4.37 Alternate .if Directive Forms

 Format:

 .if cnd(,) arg1(, arg2)

 where the cnd (followed by an optional comma) may be any of
 the following:

 condition Assemble
 (complement) Args Block if:

 eq (ne) expr equal to zero
 (not equal to zero)

 gt (le) expr greater than zero
 (less than or equal to zero)

 lt (ge) expr less than zero
 (greater than or equal to zero)

 def (ndef) symbol .define'd or user set
 (not .define'd or user set)

 b (nb) macro argument present
 symbol (argument not present)

 idn (dif) macro arguments identical
 symbol (arguments not identical)

 f (t) ----- only within a .if/.else/.endif
 conditional block

 tf ----- only within a .if/.else/.endif
 conditional block

 THE ASSEMBLER PAGE 1-47
 GENERAL ASSEMBLER DIRECTIVES

 All .if/.else/.endif directives are limited to a maximum nesting
 of 10 levels.

 The use of a .else directive outside a .if/.endif block will
 generate an <i> error. Assemblies having unequal .if and .endif
 counts will cause an <i> error.

 1.4.38 Immediate Conditional Assembly Directives

 The immediate conditional assembly directives allow a single
 line of code to be assembled without using a .if/.else/.endif
 construct. All of the previously described conditionals have
 immediate equivalents.

 Format:

 .iif arg(,) line_to_assemble
 .iifeq arg(,) line_to_assemble
 .iifne arg(,) line_to_assemble
 .iifgt arg(,) line_to_assemble
 .iifle arg(,) line_to_assemble
 .iifge arg(,) line_to_assemble
 .iiflt arg(,) line_to_assemble
 .iifdef arg(,) line_to_assemble
 .iifndef arg(,) line_to_assemble

 .iifb (,)arg(,) line_to_assemble
 .iifnb (,)arg(,) line_to_assemble
 .iifidn (,)arg1,arg2(,) line_to_assemble
 .iifdif (,)arg1,arg2(,) line_to_assemble

 .iiff line_to_assemble
 .iift line_to_assemble
 .iiftf line_to_assemble

 Alternate Format:

 .iif arg(,) line_to_assemble
 .iif eq arg(,) line_to_assemble
 .iif ne arg(,) line_to_assemble
 .iif gt arg(,) line_to_assemble
 .iif le arg(,) line_to_assemble
 .iif ge arg(,) line_to_assemble
 .iif lt arg(,) line_to_assemble
 .iif def arg(,) line_to_assemble
 .iif ndef arg(,) line_to_assemble

 THE ASSEMBLER PAGE 1-48
 GENERAL ASSEMBLER DIRECTIVES

 .iif b (,)arg(,) line_to_assemble
 .iif nb (,)arg(,) line_to_assemble
 .iif idn (,)arg1,arg2(,) line_to_assemble
 .iif dif (,)arg1,arg2(,) line_to_assemble

 .iiff line_to_assemble
 .iift line_to_assemble
 .iiftf line_to_assemble

 The (,) indicates an optional comma.

 The .iif types b, n, idn, and dif require the commas if the
 argument(s) may be blank. These commas may be removed if the
 arguments are delimited with the form ^/symbol/ for each symbol.

 The immediate conditional directives donot change the
 .if/.else/.endif nesting level.

 1.4.39 .include Directive

 Format:

 .include /string/ or

 .include ^/string/

 where: string represents a string that is the file specifica-
 tion of an ASxxxx source file.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .include
 directive will give the <q> error.

 The .include directive is used to insert a source file within
 the source file currently being assembled. When this directive
 is encountered, an implicit .page directive is issued. When the
 end of the specified source file is reached, an implicit .page
 directive is issued and input continues from the previous source
 file. The maximum nesting level of source files specified by a
 .include directive is five.

 THE ASSEMBLER PAGE 1-49
 GENERAL ASSEMBLER DIRECTIVES

 The total number of separately specified .include files is
 unlimited as each .include file is opened and then closed during
 each pass made by the assembler.

 The default directory path, if none is specified, for any
 .include file is the directory path of the current file. For
 example: if the current source file, D:\proj\file1.asm, in-
 cludes a file specified as "include1" then the file
 D:\proj\include1.asm is opened.

T
H
E

A
S
S
E
M
B
L
E
R

P
A
G
E

1
-
5
0

G
E
N
E
R
A
L

A
S
S
E
M
B
L
E
R

D
I
R
E
C
T
I
V
E
S

1
.
4
.
3
9
.
1

I
n
c
l
u
d
i
n
g

F
i
l
e
s

I
n

W
i
n
d
o
w
s
/
D
O
S

-

G
r
a
p
h
i
c
a
l

I
l
l
u
s
t
r
a
t
i
o
n

o
f

I
n
c
l
u
d
e

F
i
l
e

L
o
c
a
t
i
o
n
s

f
o
r

t
h
e

f
o
l
l
o
w
i
n
g

c
o
m
m
a
n
d

l
i
n
e

e
n
t
r
y
:

_
_
>

b
i
n
\
a
s
c
h
e
c
k

-
l

-
o

-
s

o
b
j
\
p
r
j
c
t
.
r
e
l

s
r
c
\
p
r
j
c
t
\
p
r
j
c
t
.
a
s
m

/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\

|

(
r
o
o
t
e
d
)

|

_
_
_
_
_

|

_
_
_
_
_

|

|

|

|

|

|

|

-
-
-
|

i
n
c

|

<
-
-
-
/

-
-
-
|

b
i
n

|

|

|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|

|

|

|

|

|

\
_
_
_

i
n
c
4
.
a
s
m

|

\
_
_
_

a
s
c
h
e
c
k
.
e
x
e

|

|

|

|

|

|

|

_
_
_
_
_

|

_
_
_
_
_

_
_
_
_
_

|

_
_
_
_
_

_
_
_
_
_

|

|

|

|

|

|

|

|

|

|

|

|

|

(
i
n

p
r
j
c
t
.
a
s
m

d
i
r
e
c
t
o
r
y
)

|

|

C
:
\

|
-
-
-
-
-
|

.
.
\

|
-
-
-
-
-
|

_
_
>

|
-
-
+
-
-
|

s
r
c

|
-
-
-
-
-
|
p
r
j
c
t
|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\

|

|
_
_
_
_
_
|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|

|

|

|

|

.
i
n
c
l
u
d
e

"
i
n
c
1
.
a
s
m
"

-
/

|

|

^

|

|

\
_
_
_

p
r
j
c
t
.
a
s
m

.
i
n
c
l
u
d
e

"
C
:
\
i
n
c
\
i
n
c
4
.
a
s
m
"

-
-
/

|

|

|

|

\
_
_
_

i
n
c
1
.
a
s
m

.
i
n
c
l
u
d
e

"
.
.
\
i
n
c
\
i
n
c
3
.
a
s
m
"

-
-
-
-
-
-
-
\

C
u
r
r
e
n
t

|

|

|

|

_
_
_
_
_

.
i
n
c
l
u
d
e

"
s
r
c
\
i
n
c
\
i
n
c
2
.
a
s
m
"

-
\

|

W
o
r
k
i
n
g

-
-
-
-
-
-
>

|

>
-
-
-
/

|

|

|

|

|

|

D
i
r
e
c
t
o
r
y

|

|

-
-
-
|

i
n
c

|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/

|

|

|

|
_
_
_
_
_
|

(
r
e
l
a
t
i
v
e

t
o

c
u
r
r
e
n
t

w
o
r
k
i
n
g

d
i
r
e
c
t
o
r
y
)

|

|

|

|

|

|

|

\
_
_
_

i
n
c
2
.
a
s
m

|

|

|

_
_
_
_
_

|

|

|

|

|

|

|

-
-
-
|

o
b
j

|

|

|

|
_
_
_
_
_
|

|

|

|

|

|

\
_
_
_

.
R
E
L
,

.
S
Y
M
,

.
L
S
T
,

.
H
L
R

|

|

|

|

_
_
_
_
_

|

|

|

|

(
r
e
l
a
t
i
v
e

t
o

c
u
r
r
e
n
t

w
o
r
k
i
n
g

d
i
r
e
c
t
o
r
y
)

|

-
-
-
|

i
n
c

|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/

|
_
_
_
_
_
|

|

\
_
_
_

i
n
c
3
.
a
s
m

T
H
E

A
S
S
E
M
B
L
E
R

P
A
G
E

1
-
5
1

G
E
N
E
R
A
L

A
S
S
E
M
B
L
E
R

D
I
R
E
C
T
I
V
E
S

1
.
4
.
3
9
.
2

I
n
c
l
u
d
i
n
g

F
i
l
e
s

i
n

L
i
n
u
x

-

G
r
a
p
h
i
c
a
l

I
l
l
u
s
t
r
a
t
i
o
n

o
f

I
n
c
l
u
d
e

F
i
l
e

L
o
c
a
t
i
o
n
s

f
o
r

t
h
e

f
o
l
l
o
w
i
n
g

c
o
m
m
a
n
d

l
i
n
e

e
n
t
r
y
:

_
_
$

b
i
n
/
a
s
c
h
e
c
k

-
l

-
o

-
s

o
b
j
/
p
r
j
c
t
.
r
e
l

s
r
c
/
p
r
j
c
t
/
p
r
j
c
t
.
a
s
m

/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\

|

(
r
o
o
t
e
d
)

|

_
_
_
_
_

|

_
_
_
_
_

|

|

|

|

|

|

|

-
-
-
|

i
n
c

|

<
-
-
-
/

-
-
-
|

b
i
n

|

|

|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|

|

|

|

|

|

\
_
_
_

i
n
c
4
.
a
s
m

|

\
_
_
_

a
s
c
h
e
c
k

|

|

|

|

|

|

|

_
_
_
_
_

|

_
_
_
_
_

_
_
_
_
_

|

_
_
_
_
_

_
_
_
_
_

|

|

|

|

|

|

|

|

|

|

|

|

|

(
i
n

p
r
j
c
t
.
a
s
m

d
i
r
e
c
t
o
r
y
)

|

|

/

|
-
-
-
-
-
|

.
.
/

|
-
-
-
-
-
|

_
_
$

|
-
-
+
-
-
|

s
r
c

|
-
-
-
-
-
|
p
r
j
c
t
|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\

|

|
_
_
_
_
_
|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|
_
_
_
_
_
|

|

|

|

|

|

|

.
i
n
c
l
u
d
e

"
i
n
c
1
.
a
s
m
"

-
/

|

|

^

|

|

\
_
_
_

p
r
j
c
t
.
a
s
m

.
i
n
c
l
u
d
e

"
/
i
n
c
/
i
n
c
4
.
a
s
m
"

-
-
-
-
/

|

|

|

|

\
_
_
_

i
n
c
1
.
a
s
m

.
i
n
c
l
u
d
e

"
.
.
/
i
n
c
/
i
n
c
3
.
a
s
m
"

-
-
-
-
-
-
-
\

C
u
r
r
e
n
t

|

|

|

|

_
_
_
_
_

.
i
n
c
l
u
d
e

"
s
r
c
/
i
n
c
/
i
n
c
2
.
a
s
m
"

-
\

|

W
o
r
k
i
n
g

-
-
-
-
-
-
>

|

>
-
-
-
/

|

|

|

|

|

|

D
i
r
e
c
t
o
r
y

|

|

-
-
-
|

i
n
c

|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/

|

|

|

|
_
_
_
_
_
|

(
r
e
l
a
t
i
v
e

t
o

c
u
r
r
e
n
t

w
o
r
k
i
n
g

d
i
r
e
c
t
o
r
y
)

|

|

|

|

|

|

|

\
_
_
_

i
n
c
2
.
a
s
m

|

|

|

_
_
_
_
_

|

|

|

|

|

|

|

-
-
-
|

o
b
j

|

|

|

|
_
_
_
_
_
|

|

|

|

|

|

\
_
_
_

.
R
E
L
,

.
S
Y
M
,

.
L
S
T
,

.
H
L
R

|

|

|

|

_
_
_
_
_

|

|

|

|

(
r
e
l
a
t
i
v
e

t
o

c
u
r
r
e
n
t

w
o
r
k
i
n
g

d
i
r
e
c
t
o
r
y
)

|

-
-
-
|

i
n
c

|

<
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/

|
_
_
_
_
_
|

|

\
_
_
_

i
n
c
3
.
a
s
m

 THE ASSEMBLER PAGE 1-52
 GENERAL ASSEMBLER DIRECTIVES

 1.4.40 .define and .undefine Directives

 Format:

 .define keyword /string/ or

 .define keyword ^/string/

 .undefine keyword

 where: keyword is the substitutable string which must start
 with a letter and may contain any combination of
 digits and letters.

 where: string represents a string that is substituted for the
 keyword. The string may contain any sequence of
 characters including white space.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .define
 directive will give the <q> error.

 The .define directive specifies a user defined string which
 is substituted for the keyword. The substitution string may it-
 self contain other keywords that are substitutable. The assem-
 bler resumes the parse of the line at the point the keyword was
 found. Care must be excersized to avoid any circular references
 within .define directives, otherwise the assembler may enter a
 'recursion runaway' resulting in an <s> error.

 The .undefine directive removes the keyword as a substitut-
 able string. No error is returned if the keyword was not de-
 fined.

 THE ASSEMBLER PAGE 1-53
 GENERAL ASSEMBLER DIRECTIVES

 1.4.41 .setdp Directive

 Format:

 .setdp [base [,area]]

 The set direct page directive has a common format in all the as-
 semblers supporting a paged mode. The .setdp directive is used
 to inform the assembler of the current direct page region and
 the offset address within the selected area. The normal invoca-
 tion methods are:

 .area DIRECT (PAG)
 .setdp

 or

 .setdp 0,DIRECT

 for all the 68xx microprocessors (the 6804 has only the paged
 ram area). The commands specify that the direct page is in area
 DIRECT and its offset address is 0 (the only valid value for all
 but the 6809 microprocessor). Be sure to place the DIRECT area
 at address 0 during linking. When the base address and area are
 not specified, then zero and the current area are the defaults.
 If a .setdp directive is not issued the assembler defaults the
 direct page to the area "_CODE" at offset 0.

 The assembler verifies that any local variable used in a
 direct variable reference is located in this area. Local vari-
 able and constant value direct access addresses are checked to
 be within the address range from 0 to 255.

 External direct references are assumed by the assembler to be
 in the correct area and have valid offsets. The linker will
 check all direct page relocations to verify that they are within
 the correct area.

 The 6809 microprocessor allows the selection of the direct
 page to be on any 256 byte boundary by loading the appropriate
 value into the dp register. Typically one would like to select
 the page boundary at link time, one method follows:

 THE ASSEMBLER PAGE 1-54
 GENERAL ASSEMBLER DIRECTIVES

 .area DIRECT (PAG) ; define the direct page
 .setdp
 .
 .
 .
 .area PROGRAM
 .
 ldd #DIRECT ; load the direct page register
 tfr a,dp ; for access to the direct page

 At link time specify the base and global equates to locate the
 direct page:

 -b DIRECT = 0x1000
 -g DIRECT = 0x1000

 Both the area address and offset value must be specified (area
 and variable names are independent). The linker will verify
 that the relocated direct page accesses are within the direct
 page.

 The preceeding sequence could be repeated for multiple paged
 areas, however an alternate method is to define a non-paged area
 and use the .setdp directive to specify the offset value:

 .area DIRECT ; define non-paged area
 .
 .
 .
 .area PROGRAM
 .
 .setdp 0,DIRECT ; direct page area
 ldd #DIRECT ; load the direct page register
 tfr a,dp ; for access to the direct page
 .
 .
 .setdp 0x100,DIRECT ; direct page area
 ldd #DIRECT+0x100 ; load the direct page register
 tfr a,dp ; for access to the direct page

 The linker will verify that subsequent direct page references
 are in the specified area and offset address range. It is the
 programmers responsibility to load the dp register with the cor-
 rect page segment corresponding to the .setdp base address
 specified.

 For those cases where a single piece of code must access a
 defined data structure within a direct page and there are many
 pages, define a dumby direct page linked at address 0. This

 THE ASSEMBLER PAGE 1-55
 GENERAL ASSEMBLER DIRECTIVES

 dumby page is used only to define the variable labels. Then
 load the dp register with the real base address but donot use a
 .setdp directive. This method is equivalent to indexed address-
 ing, where the dp register is the index register and the direct
 addressing is the offset.

 1.4.42 .16bit, .24bit, and .32bit Directives

 Format:

 .16bit ;specify 16-bit addressing
 .24bit ;specify 24-bit addressing
 .32bit ;specify 32-bit addressing

 The .16bit, .24bit, and .32bit directives are special direc-
 tives for assembler configuration when default values are not
 used.

 1.4.43 .msb Directive

 Format:

 .msb n

 The .msb directive is only available in selected assemblers
 which support 24 or 32-bit addressing.

 The assembler operator '>' selects the upper byte (MSB) when
 included in an assembler instruction. The default assembler
 mode is to select bits <15:8> as the MSB. The .msb directive
 allows the programmer to specify a particular byte as the 'MSB'
 when the address space is larger than 16-bits.

 The assembler directive .msb n configures the assembler to
 select a particular byte as MSB. Given a 32-bit address of MNmn
 (M(3) is <31:24>, N(2) is <23:16>, m(1) is <15:8>, and n(0) is
 <7:0>) the following examples show how to select a particular
 address byte:

 .msb 1 ;select byte 1 of address
 ;<M(3):N(2):m(1):n(0)>
 LD A,>MNmn ;byte m <15:8> ==>> A
 ...

 .msb 2 ;select byte 2 of address

 THE ASSEMBLER PAGE 1-56
 GENERAL ASSEMBLER DIRECTIVES

 ;<M(3):N(2):m(1):n(0)>
 LD A,>MNmn ;byte N <23:16> ==>> A
 ...

 .msb 3 ;select byte 3 of address
 ;<M(3):N(2):m(1):n(0)>
 LD A,>MNmn ;byte M <31:24> ==>> A
 ...

 1.4.44 .lohi and .hilo Directives

 Format:

 .lohi ;specify LSB first output
 .hilo ;specify MSB first output

 The .lohi and .hilo directives are special directives for as-
 sembler output configuration. These directives are currently
 only enabled in assembler 'ascheck'.

 An <m> error will be generated if the .lohi and .hilo direc-
 tives are both used within the same assembly source file.

 1.4.45 .end Directive

 Format:

 .end

 .end exp

 where: exp represents any expression, including constants,
 symbols, or labels.

 The .end directive is used to specify a code entry point to
 be included in the linker output file. Review the I86 and S
 record formats described in the linker section for details.

 The .end directive without an expression is ignored.

 THE ASSEMBLER PAGE 1-57
 GENERAL ASSEMBLER DIRECTIVES

 1.5 INVOKING ASXXXX

 Starting an ASxxxx assembler without any arguments provides
 the following option list and then exits:

 Usage: [-Options] [-Option with arg] file
 Usage: [-Options] [-Option with arg] outfile file1 [file2 ...]
 -h or NO ARGUMENTS Show this help list
 Output:
 -l Create list file/outfile[.lst]
 -o Create object file/outfile[.rel]
 -s Create symbol file/outfile[.sym]
 Listing:
 -d Decimal listing
 -q Octal listing
 -x Hex listing (default)
 -b Display .define substitutions in listing
 -bb and display without .define substitutions
 -c Disable instruction cycle count in listing
 -f Flag relocatable references by ` in listing file
 -ff Flag relocatable references by mode in listing file
 -p Disable automatic listing pagination
 -u Disable .list/.nlist processing
 -w Wide listing format for symbol table
 Assembly:
 -i Insert assembler line before input file(s)
 -v Enable out of range signed / unsigned errors
 Symbols:
 -a All user symbols made global
 -g Undefined symbols made global
 -z Disable case sensitivity for symbols
 "Debugging:
 -j Enable NoICE Debug Symbols
 -y Enable SDCC Debug Symbols

 The ASxxxx assemblers are command line oriented. Most sytems
 require the option(s) and file(s) arguments to follow the ASxxxx
 assembler name:

 as6809 -[Options] file

 as6809 [-Options] outfile file1 [file2 ...]

 Some systems may request the arguments after the assembler is
 started at a system specific prompt:

 THE ASSEMBLER PAGE 1-58
 INVOKING ASXXXX

 as6809
 argv: -[Options] file

 as6809
 argv: [-Options] outfile file1 [file2 ...]

 The ASxxxx options in some more detail:

 -h List the ASxxxx options

 Output:
 -l create list output (out)file.lst

 If -s (symbol table output) is not
 specified the symbol table is included
 at the end of the listing file.

 -o create object output (out)file.rel
 -s create symbol output (out)file.sym

 Listing:
 -d decimal listing
 -q octal listing
 -x hex listing (default)

 The listing radix affects the
 .lst, .rel, .hlr, and .sym files.

 -b display .define substitutions in listing

 If a .define substitution has been applied
 to an assembler source line the source
 line is printed with the substitution.

 -bb and display without .define substitutions

 If a .define substitution has been applied
 to an assembler source line the source
 line is first printed without substitution
 followed by the line with the substitution.

 -c Disable instruction cycle count in listing

 This option overrides the listing option
 'cyc' in the .list and .nlist directives.
 Instruction cycle counts cannot be enabled
 if the -c option is specified.

 THE ASSEMBLER PAGE 1-59
 INVOKING ASXXXX

 -f by ` in the listing file
 -ff by mode in the listing file

 Relocatable modes are flagged by byte
 position (LSB, Byte 2, Byte 3, MSB)
 *nMN paged,
 uvUV unsigned,
 rsRS signed,
 pqPQ program counter relative.

 -p disable listing pagination

 This option inhibits the generation
 of a form-feed character and its
 associated page header in the
 assembler listing.

 -u disable .list/.nlist processing

 This option disables all .list and
 .nlist directives. The listing mode
 is .list with the options err, loc,
 bin, eqt, cyc, lin, src, pag, lst,
 and md. The options cyc and pag are
 overridden by the -c and -p command
 line options.

 -w wide listing format for symbol table

 Assembly:
 -i Insert assembler line before input file(s)

 This option inserts an assembly source
 line before the first file to be assembled.
 e.g.: -i BUILD=2
 If the insert contains white space then
 delimit the insert. Inserted lines are
 by default not listed. To list an inserted
 line preceed the insert with a .list insert.
 e.g.: -i .list -i BUILD=2

 -v Enable out of range signed / unsigned errors

 This option enables checking for out of
 range signed / unsigned values in symbol
 equates and arithmetic operations. This
 option has some ambiguities as internally
 the assemblers use unsigned arithmetic

 THE ASSEMBLER PAGE 1-60
 INVOKING ASXXXX

 for calculations. (e.g. for a 2-byte machine
 -32768 and 32768 are both represented as 0x8000)

 Symbols:
 -a all user symbols made global

 All defined (not local or external)
 variables and symbols are flagged
 as global.

 -g undefined symbols made global

 Unresolved (external) variables
 and symbols are flagged as global.

 -z disable case sensitivity for symbols

 Debugging:
 -j enable NOICE debug symbols
 -y enable SDCC debug symbols

 The file name for the .lst, .rel, .hlr, and .sym files is the
 first file name specified in the command line. All output files
 are ascii text files which may be edited, copied, etc. The out-
 put files are the concatenation of all the input files, if files
 are to be assembled independently invoke the assembler for each
 file.

 The .rel file contains a radix directive so that the linker
 will use the proper conversion for this file. Linked files may
 have different radices.

 The ASxxxx assemblers also have several 'hidden' options
 which are not shown in the usage message. These are:

 -r Include assembler line numbers
 in the .hlr hint file
 -rr Also include non listed line
 numbers in the .hlr hint file

 -t Show Include File and Macro Expansion
 levels and memory allocations for
 the assembler and macro processor

 THE ASSEMBLER PAGE 1-61
 ERRORS

 1.6 ERRORS

 The ASxxxx assemblers provide limited diagnostic error codes
 during the assembly process, these errors will be noted in the
 listing file and printed on the stderr device.

 The assembler reports the errors on the stderr device as

 ?ASxxxx-Error-<*> in line nnn of filename

 where * is the error code, nnn is the line number, and filename
 is the source/include file.

 The errors are:

 <.> This error is caused by an absolute direct assign-
 ment of the current location counter
 . = expression (incorrect)
 rather than the correct
 . = . + expression

 <a> Indicates a machine specific addressing or address-
 ing mode error.

 Indicates a direct page boundary error.

 <c> Indicates modulus of .bndry directives to large.

 <d> Indicates a direct page addressing error.

 <e> Caused by a .error or .assume directive.

 <i> Caused by an .include file error or an .if/.endif
 mismatch.

 <m> Multiple definitions of the same label, multiple
 .module directives, multiple conflicting attributes
 in an .area or .bank directive or the use of .hilo
 and lohi within the same assembly.

 <n> An .mexit, .endm, or .narg directive outside of a
 macro, repeat block or indefinite repeat block.

 <o> Directive or mnemonic error or the use of the .org
 directive in a relocatable area.

 <p> Phase error: label location changing between passes
 2 and 3. Normally caused by having more than one

 THE ASSEMBLER PAGE 1-62
 ERRORS

 level of forward referencing.

 <q> Questionable syntax: missing or improper operators,
 terminators, or delimiters.

 <r> Relocation error: logic operation attempted on a
 relocatable term, addition of two relocatable terms,
 subtraction of two relocatable terms not within the
 same programming area or external symbols.

 <s> String Substitution / recursion error.

 <u> Undefined symbol encountered during assembly.

 <z> Divide by 0 or Modulus by 0 error: result is 0.

 1.7 LISTING FILE

 The (-l) option produces an ascii output listing file. Each
 page of output contains a five line header:

 1. The ASxxxx program name and page number

 2. Assembler Radix and Address Bits

 3. Title from a .title directive (if any)

 4. Subtitle from a .sbttl directive (if any)

 5. Blank line

 Each succeeding line contains six fields:

 1. Error field (first two characters of line)

 2. Current location counter

 3. Generated code in byte format

 4. Opcode cycles count

 5. Source text line number

 THE ASSEMBLER PAGE 1-63
 LISTING FILE

 6. Source text

 The error field may contain upto 2 error flags indicating any
 errors encountered while assembling this line of source code.

 The current location counter field displays the 16-bit,
 24-bit, or 32-bit program position. This field will be in the
 selected radix.

 The generated code follows the program location. The listing
 radix determines the number of bytes that will be displayed in
 this field. Hexidecimal listing allows six bytes of data within
 the field, decimal and octal allow four bytes within the field.
 If more than one field of data is generated from the assembly of
 a single line of source code, then the data field is repeated on
 successive lines.

 The opcode cycles count is printed within the delimiters []
 on the line with the source text. This reduces the number of
 generated code bytes displayed on the line with the source list-
 ing by one. (The -c option disables all opcode cycle listing.)

 The source text line number is printed in decimal and is fol-
 lowed by the source text. A Source line with a .page directive
 is never listed. (The -u option overrides this behavior.)

 Two additional options are available for printing the source
 line text. If the -b option is specified then the listed source
 line contains all the .define substitutions. If the -bb option
 is specified then the original source line is printed before the
 source line with substitutions.

 Two data field options are available to flag those bytes
 which will be relocated by the linker. If the -f option is
 specified then each byte to be relocated will be preceeded by
 the '`' character. If the -ff option is specified then each
 byte to be relocated will be preceeded by one of the following
 characters:

 1. * paged relocation

 2. u low byte of unsigned word or unsigned byte

 3. v high byte of unsigned word

 4. p PCR low byte of word relocation or PCR byte

 THE ASSEMBLER PAGE 1-64
 LISTING FILE

 5. q PCR high byte of word relocation

 6. r low byte relocation or byte relocation

 7. s high byte relocation

 Assemblers which use 24-bit or 32-bit addressing use an ex-
 tended flagging mode:

 1. * paged relocation

 2. u 1st byte of unsigned value

 3. v 2nd byte of unsigned value

 4. U 3rd byte of unsigned value

 5. V 4th byte of unsigned value

 6. p PCR 1st byte of relocation value or PCR byte

 7. q PCR 2nd byte of relocation value

 8. P PCR 3rd byte of relocation value

 9. Q PCR 4th byte of relocation value

 10. r 1st byte of relocation value or byte relocation

 11. s 2nd byte of relocation value

 12. R 3rd byte of relocation value

 13. S 4th byte of relocation value

 THE ASSEMBLER PAGE 1-65
 SYMBOL TABLE FILE

 1.8 SYMBOL TABLE FILE

 The symbol table has two parts:

 1. The alphabetically sorted list of symbols and/or labels
 defined or referenced in the source program.

 2. A list of the program areas defined during assembly of
 the source program.

 The sorted list of symbols and/or labels contains the follow-
 ing information:

 1. Program area number (none if absolute value or exter-
 nal)

 2. The symbol or label

 3. Directly assigned symbol is denoted with an (=) sign

 4. The value of a symbol, location of a label relative to
 the program area base address (=0), or a **** indicat-
 ing the symbol or label is undefined.

 5. The characters: G - global, L - local,
 R - relocatable, and X - external.

 The list of program areas provides the correspondence between
 the program area numbers and the defined program areas, the size
 of the program areas, and the area flags (attributes).

 1.9 OBJECT FILE

 The object file is an ascii file containing the information
 needed by the linker to bind multiple object modules into a com-
 plete loadable memory image. The object module contains the
 following designators:

 [XDQ][HL][234]
 X Hexidecimal radix
 D Decimal radix
 Q Octal radix

 H Most significant byte first

 THE ASSEMBLER PAGE 1-66
 OBJECT FILE

 L Least significant byte first

 2 16-Bit Addressing
 3 24-Bit Addressing
 4 32-Bit Addressing

 H Header
 M Module
 G Merge Mode
 B Bank
 A Area
 S Symbol
 T Object code
 R Relocation information
 P Paging information

 Refer to the linker for a detailed description of each of the
 designators and the format of the information contained in the
 object file.

 1.10 HINT FILE

 The hint file is an ascii file containing information needed
 by the linker to convert the listing file into a relocated list-
 ing file. Each line in the .hlr file coresponds to a single
 line in the listing file. The text line usually contains 3 or 4
 parameters in the radix selected for the assembler as shown in
 the following table:

 Line Position: 123456789012

 Octal: 111 222 333
 Decimal: 111 222 333
 Hex: 11 22 33

 Parameter 1 specifies the parameters listed in the line.
 A bit is set for each listing option enabled during the
 assembly of the line.

 BIT 0 - LIST_ERR Error Code(s)
 BIT 1 - LIST_LOC Location
 BIT 2 - LIST_BIN Generated Binary Value(s)
 BIT 3 - LIST_EQT Assembler Equate Value
 BIT 4 - LIST_CYC Opcode Cycles
 BIT 5 - LIST_LIN Line Numbers
 BIT 6 - LIST_SRC Assembler Source Code

 THE ASSEMBLER PAGE 1-67
 HINT FILE

 BIT 7 - HLR_NLST Listing Inhibited

 Parameter 2 is the internal assembler listing mode
 value specified for this line during the assembly process:

 0 - NLIST No listing
 1 - SLIST Source only
 2 - ALIST Address only
 3 - BLIST Address only with allocation
 4 - CLIST Code
 5 - ELIST Equate only
 6 - ILIST IF conditional evaluation

 Parameter 3 is the number of output bytes listed
 for this line.

 The 4th parameter is only output if an equate references a
 value in a different area. The area name is output in the fol-
 lowing format following the 3 parameters described above:

 Line Position: 123456789012

 Area Name: equatearea

 When the line number is output to the .hlr file (-r option)
 the line number is prepended to the 3 or 4 parameters described
 above. The line number is always in decimal in the following
 format:

 Line Position: 1234567

 Decimal: LLLLL

 Thus the four formats (for each radix) that may be present in
 a .hlr file are:

 Line Position: 123456789012345678901234567890

 11 22 33
 11 22 33 equatearea
 LLLLL 11 22 33
 LLLLL 11 22 33 equatearea

 The linker understands these formats without any user inter-
 action.

 CHAPTER 2

 THE MACRO PROCESSOR

 2.1 DEFINING MACROS

 By using macros a programmer can use a single line to insert
 a sequence of lines into a source program.

 A macro definition is headed by a .macro directive followed
 by the source lines. The source lines may optionally contain
 dummy arguments. If such arguments are used, each one is listed
 in the .macro directive.

 A macro call is the statement used by the programmer to call
 the macro source program. It consists of the macro name fol-
 lowed by the real arguments needed to replace the dummy argu-
 ments used in the macro.

 Macro expansion is the insertion of the macro source lines
 into the main program. Included in this insertion is the
 replacement of the dummy arguments by the real arguments.

 Macro directives provide a means to manipulate the macro ex-
 pansions. Only one directive is allowed per source line. Each
 directive may have a blank operand field or one or more
 operands. Legal operands differ with each directive. The
 macros and their associated directives are detailed in this
 chapter.

 Macro directives can replace any machine dependent mnemonic
 associated with a specific assembler. However, the basic assem-
 bler directives cannot be replaced with a macro.

 THE MACRO PROCESSOR PAGE 2-2
 DEFINING MACROS

 2.1.1 .macro Directive

 Format:

 [label:] .macro name, dummy argument list

 where: label represents an optional statement label.

 name represents the user-assigned symbolic
 name of the macro. This name may be
 any legal symbol and may be used as a
 label elsewhere in the program. The
 macro name is not case sensitive,
 name, NAME, or nAmE all refer to the
 same macro.

 , represents a legal macro separator
 (comma, space, and/or tab).

 dummy represents a number of legal symbols
 argument that may appear anywhere in the body of
 list the macro definition, even as a label.
 These dummy symbols can be used elsewhere
 in the program with no conflict of
 definition. Multiple dummy arguments
 specified in this directive may be
 separated by any legal separator. The
 detection of a duplicate or an illegal
 symbol in a dummy argument list
 terminates the scan and causes a <q>
 error to be generated.

 A comment may follow the dummy argument list in a .macro direc-
 tive, as shown below:

 .macro abs a,b ;Defines macro abs

 The first statement of a macro definition must be a .macro
 directive. Defining a macro with the same name as an existing
 macro will generate an <m> error. The .mdelete directive should
 be used to delete the previous macro definition before redefin-
 ing a macro.

 THE MACRO PROCESSOR PAGE 2-3
 DEFINING MACROS

 2.1.2 .endm Directive

 Format:

 .endm

 The .endm directive should not have a label. Because the direc-
 tives .irp, .irpc, and .rept may repeat more than once the label
 will be defined multiple times resulting in <m> and/or <p> er-
 rors.

 The .endm directive may be followed by a comment field, as
 shown below:

 .endm ;end of macro

 A comment may follow the dummy argument list in a .macro
 directive, as shown below:

 .macro typemsg message ;Type a message.
 jsr typemsg
 .word message
 .endm ;End of typemsg

 The final statement of every macro definition must be a .endm
 directive. The .endm directive is also used to terminate inde-
 finite repeat blocks and repeat blocks. A .endm directive en-
 countered outside a macro definition is flagged with an <n>
 error.

 2.1.3 .mexit Directive

 Format:

 .mexit

 The .mexit directive may be used to terminate a macro expansion
 before the end of the macro is encountered. This directive is
 also legal within repeat blocks. It is most useful in nested
 macros. The .mexit directive terminates the current macro as
 though a .endm directive had been encountered. Using the .mexit
 directive bypasses the complexities of nested conditional direc-
 tives and alternate assembly paths, as shown in the following

 THE MACRO PROCESSOR PAGE 2-4
 DEFINING MACROS

 example:

 .macro altr N,A,B
 .
 .
 .
 .if eq,N ;Start conditional Block
 .
 .
 .
 .mexit ;Terminate macro expansion
 .endif ;End of conditional block
 .
 .
 .
 .endm ;Normal end of macro

 In an assembly where the symbol N is replaced by zero, the
 .mexit directive would assemble the conditional block and ter-
 minate the macro expansion. When macros ar nested, a .mexit
 directive causes an exit to the next higher level of macro ex-
 pansion. A .mexit directive encountered outside a macro defini-
 tion is flagged with an <n> error.

 2.2 CALLING MACROS

 Format:

 [label:] name real arguments

 where: label represents an optional statement label.

 name represents the name of the macro, as
 specified in the macro definition.

 real represent symbolic arguments which
 arguments replace the dummy arguments listed
 in the .macro definition. When
 multiple arguments occur, they are
 separated by any legal separator.
 Arguments to the macro call are
 treated as character strings, their
 usage is determined by the macro
 definition.

 A macro definition must be established by means of the .macro

 THE MACRO PROCESSOR PAGE 2-5
 CALLING MACROS

 directive before the macro can be called and expanded within the
 source program.

 When a macro name is the same as a user label, the appearance
 of the symbol in the operator field designates the symbol as a
 macro call; the appearance of the symbol in the operand field
 designates it as a label, as shown below:

 LESS: mov @r0,r1 ;LESS is a label
 .
 .
 .
 bra LESS ;LESS is considered a label
 .
 .
 .
 LESS sym1,sym2 ;LESS is a macro call

 2.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 Multiple arguments within a macro must be separated by one of
 the legal separating characters (comma, space, and/or tab).

 Macro definition arguments (dummy) and macro call arguments
 (real) maintain a strict positional relationship. That is, the
 first real argument in a macro call corresponds with the first
 dummy argument in the macro definition.

 For example, the following macro definition and its asso-
 ciated macro call contain multiple arguments:

 .macro new a,b,c
 .
 .
 .

 new phi,sig,^/C1,C2/

 Arguments which themselves contain separating characters must be
 enclosed within the delimiter construct ^/ / where the
 character '/' may be any character not in the argument string.
 For example, the macro call:

 new ^/exg x,y/,#44,ij

 causes the entire expression

 THE MACRO PROCESSOR PAGE 2-6
 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 exg x,y

 to replace all occurrances of the symbol a in the macro defini-
 tion. Real arguments with a macro call are considered to be
 character strings and are treated as a single entity during
 macro expansion.

 The up-arrow (^) construction also allows another up-arrow
 costruction to be passed as part of the argument. This con-
 struction, for example, could have been used in the above macro
 call, as follows:

 new ^!^/exg x,y/!,#44,ij

 causing the entire string ^/exg x,y/ to be passed as an argu-
 ment.

 2.3.1 Macro Nesting

 Macro nesting occurs where the expansion of one macro in-
 cludes a call to another macro. The depth of nesting is arbi-
 trarily limited to 20.

 To pass an argument containing legal argument delimiters to
 nested macros, enclose the argument in the macro definition
 within an up-arrow construction, as shown in the coding example
 below. This extra set of delimiters for each level of nesting
 is required in the macro definition, not the in the macro call.

 .macro level1 dum1,dum2
 level2 ^/dum1/
 level2 ^/dum2/
 .endm

 .macro level2 dum3
 dum3
 add #10,z
 push z
 .endm

 A call to the level1 macro, as shown below, for example:

 level1 ^/leaz 0,x/,^/tfr x,z/

 causes the following macro expansion to occur:

 THE MACRO PROCESSOR PAGE 2-7
 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 leaz 0,x
 add #10,z
 push z
 tfr x,z
 add #10,z
 push z

 When macro definitions are nested, the inner definition cannot
 be called until the outer macro has been called and expanded.
 For example, in the following code:

 .macro lv1 a,b
 .
 .
 .
 .macro lv2 c
 .
 .
 .
 .endm
 .endm

 the lv2 macro cannot be called and expanded until the lv1 macro
 has been expanded. Likewise, any macro defined within the lv2
 macro definition cannot be called and expanded until lv2 has
 also been expanded.

 2.3.2 Special Characters in Macro Arguments

 If an argument does not contain spaces, tabs, or commas it
 may include special characters without enclosing them in a
 delimited construction. For example:

 .macro push arg
 mov arg,-(sp)
 .endm

 push x+3(%2)

 causes the following code to be generated:

 mov x+3(%2),-(sp)

 THE MACRO PROCESSOR PAGE 2-8
 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 2.3.3 Passing Numerical Arguments as Symbols

 If the unary operator backslash (\) precedes an argument, the
 macro treats the argument as a numeric value in the current pro-
 gram radix. The ascii characters representing this value are
 inserted in the macro expansion, and their function is defined
 in the context of the resulting code, as shown in the following
 example:

 .macro inc a,b
 con a,\b
 b = b + 1
 .endm

 .macro con a,b
 a'b: .word 4
 .endm

 ...

 c = 0 ;Initialize

 inc x,c

 The above macro call (inc) would thus expand to:

 x0: .word 4

 In this expanded code, the label x0: results from the con-
 catenation of two real arguments. The single quote (')
 character in the label a'b: concatenates the real argument x
 and 0 as they are passed during the expansion of the macro.
 This type of argument construction is descibed in more detail in
 a following section.

 A subsequent call to the same macro would generate the fol-
 lowing code:

 x1: .word 4

 and so on, for later calls. The two macro definitions are
 necessary because the symbol associated with the dummy argument
 b (that is, symbol c) cannot be updated in the con macro defini-
 tion, because the character 0 has replaced c in the argument
 string (inc x,c). In the con macro definition, the number
 passed is treated as a string argument. (Where the value of the
 real argument is 0, only a single 0 character is passed to the
 macro expansion.

 THE MACRO PROCESSOR PAGE 2-9
 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 2.3.4 Number of Arguments in Macro Calls

 A macro can be defined with or without arguments. If more
 arguments appear in the macro call than in the macro definition,
 a <q> error is generated. If fewer arguments appear in the
 macro call than in the macro definition, missing arguments are
 assumed to be null values. The conditional directives .if b and
 .if nb can be used within the macro to detect missing arguments.
 The number of arguments can be determined using the .narg direc-
 tive.

 2.3.5 Creating Local Symbols Automatically

 A label is often required in an expanded macro. In the con-
 ventional macro facilituies thus far described, a label must be
 explicitly specified as an argument with each macro call. The
 user must be careful in issuing subsequent calls to the same
 macro in order avoid duplicating labels. This concern can be
 eliminated through a feature of the ASxxxx macro facility that
 creates a unique symbol where a label is required in an expanded
 macro.

 ASxxxx allows temporary symbols of the form n$, where n is a
 decimal integer. Automatically created symbols are created in
 numerical order beginning at 10000$.

 The automatic generation of local symbols is invoked on each
 call of a macro whose definition contains a dummy argument pre-
 ceded by the question mark (?) character, as shown in the macro
 definition below:

 .macro beta a,?b ;dummy argument b with ?
 tst a
 beq b
 add #5,a
 b:
 .endm

 A local symbol is created automatically only when a real ar-
 gument of the macro call is either null or missing, as shown in
 Example 1 below. If the real argument is specified in the macro
 call, however, generation of the local symbol is inhibited and
 normal argument replacement occurs, as shown in Example 2 below.
 (Examples 1 and 2 are both expansions of the beta macro defined
 above.)

 THE MACRO PROCESSOR PAGE 2-10
 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 Example 1: Create a Local Symbol for the Missing Argument

 beta flag ;Second argument is missing.
 tst flag
 beq 10000$;Local symbol is created.
 add #5,flag
 10000$:

 Example 2: Do Not Create a Local Symbol

 beta r3,xyz
 tst r3
 beq xyz
 add #5,r3
 xyz:

 Automatically created local symbols resulting from the expan-
 sion of a macro, as described above, do not establish a local
 symbol block in their own right.

 When a macro has several arguments earmarked for automatic
 local symbol generation, substituting a specific label for one
 such argument risks assembly errors because the arguments are
 constructed at the point of macro invocation. Therefor, the ap-
 pearance of a label in the macro expansion will create a new lo-
 cal symbol block. The new local symbol block could leave local
 symbol references in the previous block and their symbol defini-
 tions in the new one, causing error codes in the assembly list-
 ing. Furthermore a later macro expansion that creates local
 symbols in the new block may duplicate one of the symbols in
 question, causing an additional error code <p> in the assembly
 listing.

 2.3.6 Concatenation of Macro Arguments

 The apostrophe or single quote character (') operates as a
 legal delimiting character in macro definitions. A single quote
 that precedes and/or follows a dummy argument in a macro defini-
 tion is removed, and the substitution of the real argument oc-
 curs at that point. For example, in the following statements:

 THE MACRO PROCESSOR PAGE 2-11
 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

 .macro def A,B,C
 A'B: asciz "C"
 .byte ''A,''B
 .endm

 when the macro def is called through the statement:

 def x,y,^/V05.00/

 it is expanded, as follows:

 xy: asciz "V05.00"
 .byte 'x,'y

 In expanding the first line, the scan for the first argument
 terminates upon finding the first apostrophe (') character.
 Since A is a dummy argument, the apostrphe (') is removed. The
 scan then resumes with B; B is also noted as another dummy ar-
 gument. The two real arguments x and y are then concated to
 form the label xy:. The third dummy argument is noted in the
 operand field of the .asciz directive, causing the real argument
 V05.00 to be substituted in this field.

 When evaluating the arguments of the .byte directive during
 expansion of the second line, the scan begins with the first
 apostrophe (') character. Since it is neither preceded nor fol-
 lowed by a dummy argument, this apostrophe remains in the macro
 expansion. The scan then encounters the second apostrophe,
 which is followed by a dummy argument and is therefor discarded.
 The scan of argument A is terminated upon encountering the comma
 (,). The third apostrophe is neither preceded nor followed by a
 dummy argument and again remains in the macro expansion. The
 fourth (and last) apostrophe is followed by another dummy argu-
 ment and is likewise discarded. (Four apostrophe (') characters
 were necessary in the macro definition to generate two apos-
 trophe (') characters in the macro expansion.)

 THE MACRO PROCESSOR PAGE 2-12
 MACRO ATTRIBUTE DIRECTIVES

 2.4 MACRO ATTRIBUTE DIRECTIVES

 The ASxxxx assemblers have four directives that allow the
 user to determine certain attributes of macro arguments: .narg,
 .nchr, .ntyp, and .nval. The use of these directives permits
 selective modifications of a macro expansion, depending on the
 nature of the arguments being passed. These directives are
 described below.

 2.4.1 .narg Directive

 Format:

 [label:] .narg symbol

 where: label represents an optional statement label.

 symbol represents any legal symbol. This symbol
 is equated to the number of arguments in
 the macro call currently being expanded.
 If a symbol is not specified, the .narg
 directive is flagged with a <q> error.

 The .narg directive is used to determine the number of arguments
 in the macro call currently being expanded. Hence, the .narg
 directive can appear only within a macro definition; if it ap-
 pears elsewhere, an <n> error is generated.

 The argument count includes null arguments as shown in the
 following:

 .macro pack A,B,C
 .narg cnt
 .
 .
 .
 .endm

 pack arg1,,arg3
 pack arg1

 When the first macro pack is invoked .narg will assign a value
 of three (3) to the number of arguments cnt, which includes the
 empty argument. The second invocation of macro pack has only a
 single argument specified and .narg will assign a value of one
 (1) to cnt.

 THE MACRO PROCESSOR PAGE 2-13
 MACRO ATTRIBUTE DIRECTIVES

 2.4.2 .nchr Directive

 Format:

 [label:] .nchr symbol,string

 where: label represents an optional statement label.

 symbol represents any legal symbol. This symbol
 is equated to the number of characters in
 the string of the macro call currently
 being expanded. If a symbol is not
 specified, the .nchr directive is
 flagged with a <q> error.

 , represents any legal separator (comma,
 space, and/or tab).

 string represents a string of printable 7-bit
 ascii characters. If the character
 string contains a legal separator
 (comma, space and/or tab) the whole
 string must be delimited using the
 up-arrow (^) construct ^/ /.
 If the delimiting characters do not
 match or if the ending delimiter
 cannot be detected because of a
 syntactical error in the character
 string, the .nchr directive reports
 a <q> error.

 The .nchr directive, which can appear anywhere in an ASxxxx pro-
 gram, is used to determine the number of characters in a speci-
 fied character string. This directive is useful in calculating
 the length of macro arguments.

 THE MACRO PROCESSOR PAGE 2-14
 MACRO ATTRIBUTE DIRECTIVES

 2.4.3 .ntyp Directive

 Format:

 [label:] .ntyp symbol,arg

 where: label represents an optional statement label.

 symbol represents any legal symbol. The symbol
 is made absolute and equated to 0 if
 arg is an absolute value or a non
 relocatable symbol. The symbol is made
 absolute and equated to 1 if arg is a
 relocatable symbol. If a symbol is not
 specified then the .ntyp directive is
 flagged with a <q> error.

 , represents any legal separator (comma,
 space, and/or tab).

 arg represents any legal expression or
 symbol. If arg is not specified
 then the .ntyp directive is flagged
 with a <q> error.

 The .ntyp directive, which can appear anywhere in an ASxxxx pro-
 gram, is used to determine the symbol or expression type as ab-
 solute (0) or relocatable (1).

 THE MACRO PROCESSOR PAGE 2-15
 MACRO ATTRIBUTE DIRECTIVES

 2.4.4 .nval Directive

 Format:

 [label:] .nval symbol,arg

 where: label represents an optional statement label.

 symbol represents any legal symbol. The symbol
 is equated to the value of arg and made
 absolute. If a symbol is not specified
 then the .nval directive is flagged
 with a <q> error.

 , represents any legal separator (comma,
 space, and/or tab).

 arg represents any legal expression or
 symbol. If arg is not specified
 then the .nval directive is flagged
 with a <q> error.

 The .nval directive, which can appear anywhere in an ASxxxx pro-
 gram, is used to determine the value of arg and make the result
 an absolute value.

 2.5 INDEFINITE REPEAT BLOCK DIRECTIVES

 An indefinite repeat block is similar to a macro definition
 with only one dummy argument. At each expansion of the inde-
 finite repeat range, this dummy argument is replaced with suc-
 cessive elements of a real argument list. Since the repeat
 directive and its associated range are coded in-line within the
 source program, this type of macro definition and expansion does
 not require calling the macro by name, as required in the expan-
 sion of the conventional macros previously described.

 An indefinite repeat block can appear within or outside
 another macro definition, indefinite repeat block, or repeat
 block. The rules specifying indefinite repeat block arguments
 are the same as for specifying macro arguments.

 THE MACRO PROCESSOR PAGE 2-16
 INDEFINITE REPEAT BLOCK DIRECTIVES

 2.5.1 .irp Directive

 Format:

 [label:] .irp sym,argument_list
 .
 .
 (range of indefinite repeat block)
 .
 .
 .endm

 where: label represents an optional statement label.

 sym represents a dummy argument that is
 replaced with successive real arguments
 from the argument list. If the dummy
 argument is not specified, the .irp
 directive is flagged with a <q> error.

 , represents any legal separator (comma,
 space, and/or tab).

 argument_list represents a list of real arguments
 that are to be used in the expansion
 of the indefinite repeat range. A real
 argument may consist of one or more
 7-bit ascii characters; multiple
 arguments must be separated by any
 legal separator (comma, space, and/or
 tab). If an argument must contain
 a legal separator then the up-arrow
 (_^) construct is require for that
 argument. If no real arguments are
 specified, no action is taken.

 range represents the block of code to be
 repeated once for each occurrence of
 a real argument in the list. The
 range may contain other macro
 definitions, repeat ranges and/or
 the .mexit directive.

 .endm indicates the end of the indefinite
 repeat block range.

 The .irp directive is used to replace a dummy argument with suc-
 cessive real arguments specified in an argument list. This

 THE MACRO PROCESSOR PAGE 2-17
 INDEFINITE REPEAT BLOCK DIRECTIVES

 replacement process occurrs during the expansion of an inde-
 finite repeat block range.

 2.5.2 .irpc Directive

 Format:

 [label:] .irpc sym,string
 .
 .
 (range of indefinite repeat block)
 .
 .
 .endm

 where: label represents an optional statement label.

 sym represents a dummy argument that is
 replaced with successive real characters
 from the argument string. If the dummy
 argument is not specified, the .irpc
 directive is flagged with a <q> error.

 , represents any legal separator (comma,
 space, and/or tab).

 string represents a list of 7-bit ascii
 characters. If the string contains
 legal separator characters (comma,
 space, and/or tab) then the up-arrow
 (_^) construct must delimit the string.

 range represents the block of code to be
 repeated once for each occurrence of
 a real argument in the list. The
 range may contain other macro
 definitions, repeat ranges and/or
 the .mexit directive.

 .endm indicates the end of the indefinite
 repeat block range.

 The .irpc directive is available to permit single character sub-
 stition. On each iteration of the indefinite repeat range, the
 dummy argument is replaced with successive characters in the
 specified string.

 THE MACRO PROCESSOR PAGE 2-18
 INDEFINITE REPEAT BLOCK DIRECTIVES

 2.6 REPEAT BLOCK DIRECTIVE

 A repeat block is similar to a macro definition with only one
 argument. The argument specifies the number of times the repeat
 block is inserted into the assembly stream. Since the repeat
 directive and its associated range are coded in-line within the
 source program, this type of macro definition and expansion does
 not require calling the macro by name, as required in the expan-
 sion of the conventional macros previously described.

 A repeat block can appear within or outside another macro de-
 finition, indefinite repeat block, or repeat block.

 2.6.1 .rept Directive

 Format:

 [label:] .rept exp
 .
 .
 (range of repeat block)
 .
 .
 .endm

 where: label represents an optional statement label.

 exp represents any legal expression.
 This value controls the number of
 times the block of code is to be assembled
 within the program. When the expression
 value is less than or equal to zero (0),
 the repeat block is not assembled. If
 this value is not an absolute value, the
 .rept directive is flagged with an <r>
 error.

 range represents the block of code to be
 repeated. The range may contain other
 macro definitions, repeat ranges and/or
 the .mexit directive.

 .endm indicates the end of the repeat block
 range.

 The .rept directive is used to duplicate a block of code, a

 THE MACRO PROCESSOR PAGE 2-19
 REPEAT BLOCK DIRECTIVE

 certain number of times, in line with other source code.

 2.7 MACRO DELETION DIRECTIVE

 The .mdelete directive deletes the definitions of the the
 specified macro(s).

 2.7.1 .mdelete Directive

 Format:

 .mdelete name1,name2,...,namen

 where: name1, represent legal macro names. When multiple
 name2, names are specified, they are separated
 ..., by any legal separator (comma, space, and/or
 namen tab).

 2.8 MACRO INVOCATION DETAILS

 The invocation of a macro, indefinite repeat block, or repeat
 block has specific implications for .if-.else-.endif constructs
 and for .list-.nlist directives.

 At the point a macro, indefinite repeat block, or repeat
 block is called the following occurs:

 1) The initial .if-.else-.endif
 state is saved.

 2) The initial .list-.nlist
 state is saved.

 3) The macro, indefinite repeat block,
 or repeat block is inserted into the
 assembler source code stream. All
 argument substitution is performed
 at this point.

 When the macro completes and after each pass through an inde-
 finite repeat block or repeat block the .if-.else-.endif and
 .list-.nlist state is reset to the initial state.

 THE MACRO PROCESSOR PAGE 2-20
 MACRO INVOCATION DETAILS

 The reset of the .if-.else-.endif state means that the invo-
 cation of a macro, indefinite repeat block, or repeat block can-
 not change the .if-.else-.endif state of the calling code. For
 example the following code does not change the .if-.else-.endif
 condition at macro completion:

 .macro fnc A
 .if nb,^!A!
 ...
 .list (meb)
 .mexit
 .else
 ...
 .nlist
 .mexit
 .endif
 .endm

 code: fnc

 Within the macro the .if condition becomes false but the con-
 dition is not propagated outside the macro.

 Similarly, when the .list-.nlist state is changed within a
 macro the change is not propogated outside the macro.

 The normal .if-.else-.endif processing verifies that every
 .if has a corresponding .endif. When a macro, indefinite repeat
 block, or repeat block terminates by using the .mexit directive
 the .if-.endif checking is bypassed because all source lines
 between the .mexit and .endm directives are skipped.

 2.9 CONTROLLING MACRO LISTINGS

 The basic .list directive enables listing of all fields in
 the assembler listing and clears the 'meb' and 'me' options.

 When a macro is entered the listing is by default inhibited
 unless the 'meb' (list only binary and location) or 'me' (enable
 listing) options have been specified. The meb option clears all
 listing options and sets the 'bin' and 'loc' options. The 'me'
 option simply enables any previously set listing options. If no
 listing options have been set then a list 'me' option will not
 cause any listing.

 THE MACRO PROCESSOR PAGE 2-21
 CONTROLLING MACRO LISTINGS

 Within a macro the .list/.nlist directives can set or clear
 any of the listing options but listing will only occur when the
 'me' option is set.

 2.10 BUILDING A MACRO LIBRARY

 Using the macro facilities of the ASxxxx assemblers a simple
 macro library can be built. The macro library is built by com-
 bining individual macros, sets of macros, or include file direc-
 tives into a single file. Each macro entity is enclosed within
 a .if/.endif block that selects the desired macro definitions.

 The selection of specific macros to be imported in a program
 is performed by three macros, .mlib, .mcall, and .mload, con-
 tained in the file mlib.def.

 2.10.1 .mlib Macro Directive

 Format:

 .mlib file

 where: file represents the macro library file name.
 If the file name does not include a path
 then the path of the current assembly
 file is used. If the file name (and/or
 path) contains white space then the
 path/name must be delimited with the
 up-arrow (^) construct ^/ /.

 The .mlib directive defines two macros, .mcall and .mload, which
 when invoked will read a file, importing specific macro defini-
 tions. Any previous .mcall and/or .mload directives will be
 deleted before the new .mcall and .mload directives are defined.

 The .mload directive is an internal directive which simply
 includes the macro library file with the listing disabled.

 The following is the mlib.def file which defines the macros
 .mlib, .mcall, and .mload.

 THE MACRO PROCESSOR PAGE 2-22
 BUILDING A MACRO LIBRARY

 ;**
 ;* *
 ;* A simple Macro Library Implementation *
 ;* *
 ;* December 2008 *
 ;* *
 ;**

 .macro .mlib FileName
 .if b,^!FileName!
 .error 1 ; File Name Required
 .mexit
 .endif
 .mdelete .mcall
 .macro .mcall a,b,c,d,e,f,g,h
 .irp sym ^!a!,^!b!,^!c!,^!d!,^!e!,^!f!,^!g!,^!h!
 .iif nb,^!sym! .define .$$.'sym
 .endm
 .mload
 .irp sym ^!a!,^!b!,^!c!,^!d!,^!e!,^!f!,^!g!,^!h!
 .if nb,^!sym!
 .iif ndef,sym'.$$. .error 1 ; macro not found
 .undefine .$$.'sym
 .undefine sym'.$$.
 .endif
 .endm
 .endm ;.mcall
 .mdelete .mload
 .macro .mload
 .nlist
 .include ^!FileName!
 .list
 .endm ;.mload
 .endm ;.mlib

 2.10.2 .mcall Macro Directive

 Format:

 .mcall macro1,macro2,...,macro8

 where:

 macro1, represents from 1 to 8 macro library
 macro2, references to a macro definition or
 ..., set of macro definitions included in
 macro8 the file specified with the .mlib macro.

 THE MACRO PROCESSOR PAGE 2-23
 BUILDING A MACRO LIBRARY

 As can be seen from the macro definition of .mlib and .mcall
 shown above, when .mcall is invoked temporary symbols are de-
 fined for each macro or macro set that is to be imported. The
 macro .mload is then invoked to load the macro library file
 specified in the call to .mlib.

 For example, when the following macros are invoked:

 .mlib crossasm.sml ; Cross Assembler Macros
 .mcall M6809 ; M6809 Macro Group

 The .mlib macro defines the .mload macro to access the system
 macro file crossasm.sml. Invoking the .mcall macro creates a
 temporary symbol, '.$$.M6809', and then invokes the macro .mload
 to import the system macro file crossasm.sml. The file cros-
 sasm.sml contains conditional statements that define the re-
 quired macros and creates a temporary symbol 'M6809.$$.' to
 indicate the macro group was found. If the macro is not found
 an error message is generated.

 The following is a small portion of the crossasm.sml system
 macro file which shows the M6809 macro group:

 .title Cross Assembler Macro Library

 ; This MACRO Library is Case Insensitive.
 ;

 ...

 ; Macro Based 6809 Cross Assembler

 .$.SML.$. =: 0
 .if idn a,A
 .iif def,.$$.m6809 .$.SML.$. = -1
 .else
 .iif def,.$$.m6809 .$.SML.$. = -1
 .iif def,.$$.M6809 .$.SML.$. = 1
 .endif
 .iif lt,.$.SML.$. .define m6809.$$.
 .iif gt,.$.SML.$. .define M6809.$$.
 .iif ne,.$.SML.$. .include "m6809.mac"

 ...

 THE MACRO PROCESSOR PAGE 2-24
 EXAMPLE MACRO CROSS ASSEMBLERS

 2.11 EXAMPLE MACRO CROSS ASSEMBLERS

 The 'ascheck' subdirectory 'macroasm' contains 7 assemblers
 written using only the general macro processing facility of the
 ASxxxx assemblers:

 i8085.mac - 8085 Microprocessor
 m6800.mac - 6800 Microprocessor
 m6801.mac - 6801 Microprocessor
 m6804.mac - 6804 Microprocessor
 m6805.mac - 6805 Microprocessor
 m6809.mac - 6809 Microprocessor
 s2650.mac - 2650 Microprocessor

 These absolute macro cross assemblers are included to il-
 lustrate the functionality of the general macro processing
 facility of the ASxxxx assemblers. In general they are useful
 examples of actual macro implementations.

 CHAPTER 3

 THE LINKER

 3.1 ASLINK RELOCATING LINKER

 ASLINK is the companion linker for the ASxxxx assemblers.
 The linker supports versions 3.xx, 4.xx, and 5.xx of the ASxxxx
 assemblers. Object files from version 3, 4, and 5 may be freely
 mixed while linking. Note that version 3 object files contain
 only a subset of the options available in versions 4 and 5.

 The program ASLINK is a general relocating linker performing
 the following functions:

 1. Bind multiple object modules into a single memory image

 2. Resolve inter-module symbol references

 3. Combine code belonging to the same area from multiple
 object files into a single contiguous memory region

 4. Search and import object module libraries for undefined
 global variables

 5. Perform byte and word program counter relative
 (pc or pcr) addressing calculations

 6. Define absolute symbol values at link time

 7. Define absolute area base address values at link time

 8. Produce Intel Hex, Motorola S, or Tandy CoCo Disk Basic
 output files

 THE LINKER PAGE 3-2
 ASLINK RELOCATING LINKER

 9. Produce a map of the linked memory image

 10. Produce an updated listing file with the relocated ad-
 dresses and data

 3.2 INVOKING ASLINK

 Starting ASlink without any arguments provides the following
 option list and then exits:

 Usage: [-Options] [-Option with arg] file
 Usage: [-Options] [-Option with arg] outfile file [file ...]
 -h or NO ARGUMENTS Show this help list
 -p Echo commands to stdout (default)
 -n No echo of commands to stdout
 Alternates to Command Line Input:
 -c ASlink >> prompt input
 -f file[.lnk] Command File input
 Librarys:
 -k Library path specification, one per -k
 -l Library file specification, one per -l
 Relocation:
 -b area base address=expression
 -g global symbol=expression
 Map format:
 -m Map output generated as (out)file[.map]
 -m1 Linker generated symbols included in (out)file[.map]
 -w Wide listing format for map file
 -x Hexidecimal (default)
 -d Decimal
 -q Octal
 Output:
 -i Intel Hex as (out)file[.i--]
 -i1 Legacy: start address record type set to 1
 -s Motorola S Record as (out)file[.s--]
 -t Tandy CoCo Disk BASIC binary as (out)file[.bi-]
 -j NoICE Debug output as (out)file[.noi]
 -y SDCDB Debug output as (out)file[.cdb]
 -o Linked file/library object output enable (default)
 -v Linked file/library object output disable
 List:
 -u Update listing file(s) with link data as file(s)[.rst]
 Case Sensitivity:
 -z Disable Case Sensitivity for Symbols
 End:
 -e or null line terminates input

 THE LINKER PAGE 3-3
 INVOKING ASLINK

 NOTE

 When ASlink is invoked with a single filename the
 created output file will have the same filename as the
 .rel file.

 When ASlink is invoked with multiple filenames the
 first filename is the output filename and the remain-
 ing filenames are linked together into the output
 filename.

 Most sytems require the options to be entered on the command
 line:

 aslink [-Options] [-Options with args] file

 aslink [-Options] [-Options with args] outfile file1 [file2 ...]

 Some systems may request the arguments after the linker is
 started at a system specific prompt:

 aslink
 argv: -[options] -[options with args] file

 aslink
 argv: [-Options] [-Options with args] outfile file1 [file2 ...]

 The linker commands are explained in some more detail:

 1. -h or NO ARGUMENTS Show this help list
 Simply prints the help list on stdout.

 2. -c ASlink >> prompt mode.
 The ASlink >> prompt mode reads linker commands from
 stdin.

 3. -f file Command file mode.
 The command file mode imports linker commands from the
 specified file (extension must be .lnk), imported -c
 and -f commands are ignored. If the directory path,

 THE LINKER PAGE 3-4
 INVOKING ASLINK

 for a file to be linked, is not specified in the com-
 mand file then the path defaults to the .lnk file
 directory path.

 4. -p/-n enable/disable echoing commands to stdout.

 5. -i/-s/-t Intel Hex (file.i--), Motorola S (file.s--),
 or Tandy Color Computer Disk Basic (file.bi-) image
 output file.

 6. -i1 Legacy: start address record type set to 1
 Use the type 1 record to indicate the program start ad-
 dress instead of record type 3. Record type 1 was used
 in some older tools.

 7. -o/-v Specifies that subsequent linked
 files/libraries will generate object output (default)
 or suppress object output. (if option -i, -s, or -t
 was specified)

 8. -z Disable Case Sensitivity for Symbols

 9. -m Generate a map file (file.map). This file
 contains a list of the symbols (by area) with absolute
 addresses, sizes of linked areas, and other linking in-
 formation.

 10. -m1 Linker generated symbols included in
 (out)file[.map]
 The linker creates internal symbols for each area (area
 segment) input during the linking process but normally
 suppresses their inclusion in the map file. This op-
 tion enables their inclusion in the map file.

 11. -w Specifies that a wide listing format be used
 for the map file.

 12. -xdq Specifies the number radix for the map file
 (Hexidecimal, Decimal, or Octal).

 13. -u Generate an updated listing file (file.rst)
 derived from the relocated addresses and data from the
 linker and the hint file (file.hlr) output by the as-
 sembler.

 14. file File(s) to be linked. Files may be on the
 same line as the above options or on a separate line(s)
 one file per line or multiple files separated by spaces
 or tabs.

 THE LINKER PAGE 3-5
 INVOKING ASLINK

 15. -b area=expression
 (one definition per line in a linker command file.)
 This specifies an area base address where the expres-
 sion may contain constants and/or defined symbols from
 the linked files.

 16. -g symbol=expression
 (one definition per line in a linker command file.)
 This specifies the value for the symbol where the ex-
 pression may contain constants and/or defined symbols
 from the linked files.

 17. -k library directory path
 (one definition per line in a linker command file.)
 This specifies one possible path to an object library.
 More than one path is allowed.

 18. -l library file specification
 (one definition per line in a linker command file.)
 This specifies a possible library file. More than one
 file is allowed.

 19. -e or null line, terminates input to the linker.

 3.3 LIBRARY PATH(S) AND FILE(S)

 The process of resolving undefined symbols after scanning the
 input object files includes the scanning of object module
 libraries. The linker will search through all combinations of
 the library path specifications (input by the -k option) and the
 library file specifications (input by the -l option) that lead
 to an existing library file. Each library file contains a list
 (one file per line) of modules included in this particular
 library. Each existing object module is scanned for a match to
 the undefined symbol. The first module containing the symbol is
 then linked with the previous modules to resolve the symbol de-
 finition. The library object modules are rescanned until no
 more symbols can be resolved. The scanning algorithm allows
 resolution of back references. No errors are reported for non
 existant library files or object modules.

 The library file specification may be formed in one of two
 ways:

 THE LINKER PAGE 3-6
 LIBRARY PATH(S) AND FILE(S)

 1. If the library file contained an absolute path/file
 specification then this is the object module's
 path/file.
 (i.e. C:\... or C:/...)

 2. If the library file contains a relative path/file
 specification then the concatenation of the path and
 this file specification becomes the object module's
 path/file.
 (i.e. \... or /...)

 As an example, assume there exists a library file termio.lib
 in the syslib directory specifying the following object modules:

 \6809\io_disk first object module
 d:\special\io_comm second object module

 and the following parameters were specified to the linker:

 -k c:\iosystem\ the first path
 -k c:\syslib\ the second path

 -l termio the first library file
 -l io the second library file (no such file)

 The linker will attempt to use the following object modules to
 resolve any undefined symbols:

 c:\syslib\6809\io_disk.rel (concatenated path/file)
 d:\special\io_comm.rel (absolute path/file)

 all other path(s)/file(s) don't exist. (No errors are reported
 for non existant path(s)/file(s).)

 3.4 ASLINK PROCESSING

 The linker processes the files in the order they are
 presented. The first pass through the input files is used to
 define all program areas, the section area sizes, and symbols
 defined or referenced. Undefined symbols will initiate a search
 of any specified library file(s) and the importing of the module
 containing the symbol definition. After the first pass the -b
 (area base address) definitions, if any, are processed and the
 areas linked.

 THE LINKER PAGE 3-7
 ASLINK PROCESSING

 The area linking proceeds by first examining the area types
 ABS, CON, REL, OVR and PAG. Absolute areas (ABS) from separate
 object modules are always overlayed and have been assembled at a
 specific address, these are not normally relocated (if a -b com-
 mand is used on an absolute area the area will be relocated).
 Relative areas (normally defined as REL|CON) have a base address
 of 0x0000 as read from the object files, the -b command speci-
 fies the beginning address of the area. All subsequent relative
 areas will be concatenated with preceeding relative areas.
 Where specific ordering is desired, the first linker input file
 should have the area definitions in the desired order. At the
 completion of the area linking all area addresses and lengths
 have been determined. The areas of type PAG are verified to be
 on a 256 byte boundary and that the length does not exceed 256
 bytes. Any errors are noted on stderr and in the map file.

 The linker also automatically generates two symbols for each
 linked program area:

 'a_<area>' The starting address of the area.

 'l_<area>' The length of the area.

 and two symbols for each area segment:

 'm_<area>_n' The boundary modulus of the area segment.

 's_<area>_n' The starting address of the area segment.

 The appended '_n' signifies the area segment number within a
 linked area.

 These symbols are in general only useful diagnostically and
 are not visible externally. However if the -m1 linker option is
 used these symbols will be output to the map file.

 Next the global symbol definitions (-g option), if any, are
 processed. The symbol definitions have been delayed until this
 point because the absolute addresses of all internal symbols are
 known and can be used in the expression calculations.

 Before continuing with the linking process the symbol table
 is scanned to determine if any symbols have been referenced but
 not defined. Undefined symbols are listed on the stderr device.
 if a .module directive was included in the assembled file the
 module making the reference to this undefined variable will be
 printed.

 THE LINKER PAGE 3-8
 ASLINK PROCESSING

 Constants defined as global in more than one module will be
 flagged as multiple definitions if their values are not identi-
 cal.

 After the preceeding processes are complete the linker may
 output a map file (-m option). This file provides the following
 information:

 1. Global symbol values and label absolute addresses

 2. Defined areas and there lengths

 3. Remaining undefined symbols

 4. List of modules linked

 5. List of library modules linked

 6. List of -b and -g definitions

 The final step of the linking process is performed during the
 second pass of the input files. As the xxx.rel files are read
 the code is relocated by substituting the physical addresses for
 the referenced symbols and areas and may be output in Intel,
 Motorola, or Tandy CoCo Disk Basic formats. The number of files
 linked and symbols defined/referenced is limited by the proces-
 sor space available to build the area/symbol lists. If the -u
 option is specified then the listing files (file.lst) associated
 with the relocation files (file.rel) are scanned and used to
 create a new file (file.rst) which has all addresses and data
 relocated to their final values.

 The -o/-v options allow the simple creation of loadable or
 overlay modules. Loadable and overlay modules normally need to
 be linked with a main module(s) to resolve external symbols.
 The -o/-v options can be used to enable object output for the
 loadable or overlay module(s) and suppress the object code from
 the linked main module(s). The -o/-v options can be applied
 repeatedly to specify a single linked file, groups of files, or
 libraries for object code inclusion or suppression.

 THE LINKER Page 3-9
 ASXXXX VERSION 5.XX (4.XX) LINKING

 3.5 ASXXXX VERSION 5.XX (4.XX) LINKING

 The linkers' input object file is an ascii file containing
 the information needed by the linker to bind multiple object
 modules into a complete loadable memory image.

 The object module contains the following designators:

 [XDQ][HL][234]
 X Hexidecimal radix
 D Decimal radix
 Q Octal radix

 H Most significant byte first
 L Least significant byte first

 2 16-Bit Addressing
 3 24-Bit Addressing
 4 32-Bit Addressing

 H Header
 M Module
 G Merge Mode
 B Bank
 A Area
 S Symbol
 T Object code
 R Relocation information
 P Paging information

 3.5.1 Object Module Format

 The first line of an object module contains the
 [XDQ][HL][234] format specifier (i.e. XH2 indicates a hex-
 idecimal file with most significant byte first and 16-bit ad-
 dressing) for the following designators.

 THE LINKER PAGE 3-10
 ASXXXX VERSION 5.XX (4.XX) LINKING

 3.5.2 Header Line

 H aa areas gg global symbols

 The header line specifies the number of areas(aa) and the
 number of global symbols(gg) defined or referenced in this ob-
 ject module segment.

 3.5.3 Module Line

 M name

 The module line specifies the module name from which this
 header segment was assembled. The module line will not appear
 if the .module directive was not used in the source program.

 3.5.4 Merge Mode Line

 G nn ii 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 The mode structure contains the specification (or partial
 specification) of one of the assemblers' merge modes. Sixteen
 bits may be specified on a single line. Each assembler must
 specify at least one merge mode. The merging specification al-
 lows arbitrarily defined active bits and bit positions. The 32
 element arrays are indexed from 0 to 31. Index 0 corresponds to
 bit 0, ..., and 31 corresponds to bit 31 of a normal integer
 value.

 1. nn is merge mode number

 2. ii is the beginning bit position of the following data

 3. 00 ... merge mode bit elements

 The value of the element specifies if the normal in-
 teger bit is active (bit <7> is set, 0x80) and what
 destination bit (bits <4:0>, 0 - 31) should be
 loaded with this normal integer bit.

 THE LINKER PAGE 3-11
 ASXXXX VERSION 5.XX (4.XX) LINKING

 3.5.5 Bank Line

 B name base nn size nn map nn flags nn fsfx string

 The B line defines a bank identifier as name. A bank is a
 structure containing a collection of areas. The bank is treated
 as a unique linking structure seperate from other banks. Each
 bank can have a unique base address (starting address). The
 size specification may be used to signal the overflow of the
 banks' allocated space. The Linker combines all areas included
 within a bank as seperate from other areas. The code from a
 bank may be output to a unique file by specifying the File Suf-
 fix parameter (fsfx). This allows the seperation of multiple
 data and code segments into isolated output files. The map
 parameter is for NOICE processing. The flags indicate if the
 parameters have been set.

 3.5.6 Area Line

 A label size ss flags ff [bank bb] [bndry mm]

 The area line defines the area label, the size (ss) of the
 area in bytes, the area flags (ff), the optional [bank bb]
 specifies the bank this area is a member of, and the optional
 [bndry mm] which specifies the boundary modulus for this area
 segment. The area flags specify the ABS, REL, CON, OVR, and PAG
 parameters:

 OVR/CON (0x04/0x00 i.e. bit position 2)

 ABS/REL (0x08/0x00 i.e. bit position 3)

 PAG (0x10 i.e. bit position 4)

 The bank label is optional and only specified if the area is
 to be included within a bank.

 When this area (area segment) is linked and their is a boun-
 dary modulus specified then the code/data beginning address will
 be increased to match the boundary modulus. This will also in-
 crease the area (area segment) size by the same amount.

 THE LINKER PAGE 3-12
 ASXXXX VERSION 5.XX (4.XX) LINKING

 3.5.7 Symbol Line

 S name Defnnnn

 or

 S name Refnnnn

 The symbol line defines (Def) or references (Ref) the identi-
 fier name with the value nnnn. The defined value is relative to
 the current area base address. References to constants and ex-
 ternal global symbols will always appear before the first area
 definition. References to external symbols will have a value of
 zero.

 3.5.8 T Line

 T xx xx nn nn nn nn nn ...

 The T line contains the assembled code output by the assem-
 bler with xx xx being the offset address from the current area
 base address and nn being the assembled instructions and data in
 byte format. (xx xx and nn nn can be 2, 3, or 4 bytes as speci-
 fied by the .REL file header.)

 3.5.9 R Line

 R 0 0 nn nn n1 n2 xx xx ...

 The R line provides the relocation information to the linker.
 The nn nn value is the current area index, i.e. which area the
 current values were assembled. Relocation information is en-
 coded in groups of 4 bytes:

 1. n1 is the relocation mode and object format.
 1. bits <1:0> specify the number of bytes to output
 2. bits <2:3> normal(0x00) / MSB (0x0C)
 signed(0x04) / unsigned(0x08)
 3. bit 4 normal(0x00)/page '0' (0x10) reference
 4. bit 5 normal(0x00)/page 'nnn' (0x20) reference
 PAGX mode if both bits are set (0x30)
 5. bit 6 normal(0x00)/PC relative(0x40) relocation
 6. bit 7 relocatable area(0x00)/symbol(0x80)

 2. n2 is a byte index and a merge mode index

 THE LINKER PAGE 3-13
 ASXXXX VERSION 5.XX (4.XX) LINKING

 1. bits <3:0> are a byte index into the corresponding
 (i.e. preceeding) T line data (i.e. a pointer to
 the data to be updated by the relocation).
 2. bits <7:4> are an index into a selected merge mode.
 Currently mode 0 simply specifies to use standard
 byte processing modes and merging is ignored.

 3. xx xx is the area/symbol index for the area/symbol be-
 ing referenced. the corresponding area/symbol is found
 in the header area/symbol lists.

 The groups of 4 bytes are repeated for each item requiring relo-
 cation in the preceeding T line.

 3.5.10 P Line

 P 0 0 nn nn n1 n2 xx xx

 The P line provides the paging information to the linker as
 specified by a .setdp directive. The format of the relocation
 information is identical to that of the R line. The correspond-
 ing T line has the following information:
 T xx xx aa aa bb bb

 Where aa aa is the area reference number which specifies the
 selected page area and bb bb is the base address of the page.
 bb bb will require relocation processing if the 'n1 n2 xx xx' is
 specified in the P line. The linker will verify that the base
 address is on a 256 byte boundary and that the page length of an
 area defined with the PAG type is not larger than 256 bytes.

 The linker defaults any direct page references to the first
 area defined in the input REL file. All ASxxxx assemblers will
 specify the _CODE area first, making this the default page area.

 THE LINKER PAGE 3-14
 ASXXXX VERSION 5.XX (4.XX) LINKING

 3.5.11 24-Bit and 32-Bit Addressing

 When 24-bit or 32-bit addressing is specified in the file
 format line [XDQ][HL][234] then the S and T Lines have modified
 formats:
 S name Defnnnnnn (24-bit)
 S name Refnnnnnn (24-bit)
 T xx xx xx nn nn nn nn nn ... (24-bit)

 S name Defnnnnnnnn (32-bit)
 S name Refnnnnnnnn (32-bit)
 T xx xx xx xx nn nn nn nn nn ... (32-bit)

 The multibyte formats for byte data replace the 2-byte form
 for 16-bit data with 3-byte or 4-byte data for 24-bit or 32-bit
 data respectively. The 2nd byte format (also named MSB) always
 uses the second byte of the 2, 3, or 4-byte data.

 3.5.12 ASlink V5.xx (V4.xx) Error Messages

 The linker provides detailed error messages allowing the pro-
 grammer to quickly find the errant code. As the linker com-
 pletes pass 1 over the input file(s) it reports any page
 boundary or page length errors as follows:

 ?ASlink-Warning-Paged Area PAGE0 Boundary Error

 and/or

 ?ASlink-Warning-Paged Area PAGE0 Length Error

 where PAGE0 is the paged area.

 Also during Pass 1 any bank size (length) errors will be
 reported as follows:

 ?ASlink-Warning-Size limit exceeded in bank BANK
 where BANK is the bank name.

 During Pass two the linker reads the T, R, and P lines per-
 forming the necessary relocations and outputting the absolute
 code. Various errors may be reported during this process

 THE LINKER PAGE 3-15
 ASXXXX VERSION 5.XX (4.XX) LINKING

 The P line processing can produce only one possible error:

 ?ASlink-Warning-Page Definition Boundary Error
 file module pgarea pgoffset
 PgDef t6809l t6809l PAGE0 0001

 The error message specifies the file and module where the .setdp
 direct was issued and indicates the page area and the page
 offset value determined after relocation.

 The R line processing produces various error messages:

 ?ASlink-Warning-Signed value error
 ?ASlink-Warning-Unsigned value error
 ?ASlink-Warning-Byte PCR relocation error
 ?ASlink-Warning-Word PCR relocation error
 ?ASlink-Warning-3-Byte PCR relocation error
 ?ASlink-Warning-4-Byte PCR relocation error
 ?ASlink-Warning-Page0 relocation error
 ?ASlink-Warning-PageN relocation error
 ?ASlink-Warning-PageX relocation error
 ?ASlink-Warning-Signed Merge Bit Range error
 ?ASlink-Warning-Unsigned/Overflow Merge Bit Range error

 These error messages also specify the file, module, area, and
 offset within the area of the code referencing (Refby) and de-
 fining (Defin) the symbol:

 ?ASlink-Warning-Signed value error for symbol two56
 file module area offset
 Refby t Pagetest PROGRAM 0006
 Defin t Pagetest DIRECT 0100

 If the symbol is defined in the same module as the reference the
 linker is unable to report the symbol name. The assembler list-
 ing file(s) should be examined at the offset from the specified
 area to locate the offending code.

 The errors are:

 1. The Signed value error indicates an indexing value ex-
 ceeded the maximum negative or maximum positive value
 for the current variable size.

 2. The Unsigned value error indicates an indexing value
 was greater than maximum positive value for the current
 variable size.

 THE LINKER PAGE 3-16
 ASXXXX VERSION 5.XX (4.XX) LINKING

 3. The byte PCR error is caused by exceeding the pc rela-
 tive byte branch range.

 4. The word PCR error is caused by exceeding the pc rela-
 tive word branch range.

 5. The 3-byte PCR error is caused by exceeding the pc re-
 lative 3-byte branch range.

 6. The 4-byte PCR error is caused by exceeding the pc re-
 lative 4-byte branch range.

 7. The Page0 error is generated if the direct page vari-
 able is not in the page0 range of 0 to 255.

 8. The PageN error is generated if the direct page vari-
 able is not within the Nth page range of 0 to 255.

 9. The PageX error is generated if the direct page vari-
 able is not within the extended page range.

 10. The Signed Merge Bit Range error indicates an indexing
 value exceeded the maximum negative or maximum positive
 value for the current signed merge variable size.

 11. The Unsigned/Overflow Merge Bit Range error indicates
 an indexing value was greater than maximum positive
 value for the current unsigned merge variable size.

 THE LINKER Page 3-17
 ASXXXX VERSION 3.XX LINKING

 3.6 ASXXXX VERSION 3.XX LINKING

 The linkers' input object file is an ascii file containing
 the information needed by the linker to bind multiple object
 modules into a complete loadable memory image.

 The object module contains the following designators:

 [XDQ][HL][234]
 X Hexidecimal radix
 D Decimal radix
 Q Octal radix

 H Most significant byte first
 L Least significant byte first

 2 16-Bit Addressing
 3 24-Bit Addressing
 4 32-Bit Addressing

 H Header
 M Module
 A Area
 S Symbol
 T Object code
 R Relocation information
 P Paging information

 3.6.1 Object Module Format

 The first line of an object module contains the
 [XDQ][HL][234] format specifier (i.e. XH2 indicates a hex-
 idecimal file with most significant byte first and 16-bit ad-
 dressing) for the following designators.

 THE LINKER PAGE 3-18
 ASXXXX VERSION 3.XX LINKING

 3.6.2 Header Line

 H aa areas gg global symbols

 The header line specifies the number of areas(aa) and the
 number of global symbols(gg) defined or referenced in this ob-
 ject module segment.

 3.6.3 Module Line

 M name

 The module line specifies the module name from which this
 header segment was assembled. The module line will not appear
 if the .module directive was not used in the source program.

 3.6.4 Area Line

 A label size ss flags ff

 The area line defines the area label, the size (ss) of the
 area in bytes, and the area flags (ff). The area flags specify
 the ABS, REL, CON, OVR, and PAG parameters:

 OVR/CON (0x04/0x00 i.e. bit position 2)

 ABS/REL (0x08/0x00 i.e. bit position 3)

 PAG (0x10 i.e. bit position 4)

 3.6.5 Symbol Line

 S name Defnnnn

 or

 S name Refnnnn

 The symbol line defines (Def) or references (Ref) the identi-
 fier name with the value nnnn. The defined value is relative to
 the current area base address. References to constants and ex-
 ternal global symbols will always appear before the first area
 definition. References to external symbols will have a value of
 zero.

 THE LINKER PAGE 3-19
 ASXXXX VERSION 3.XX LINKING

 3.6.6 T Line

 T xx xx nn nn nn nn nn ...

 The T line contains the assembled code output by the assem-
 bler with xx xx being the offset address from the current area
 base address and nn being the assembled instructions and data in
 byte format.

 3.6.7 R Line

 R 0 0 nn nn n1 n2 xx xx ...

 The R line provides the relocation information to the linker.
 The nn nn value is the current area index, i.e. which area the
 current values were assembled. Relocation information is en-
 coded in groups of 4 bytes:

 1. n1 is the relocation mode and object format, for the
 adhoc extension modes refer to asxxxx.h or aslink.h
 1. bit 0 word(0x00)/byte(0x01)
 2. bit 1 relocatable area(0x00)/symbol(0x02)
 3. bit 2 normal(0x00)/PC relative(0x04) relocation
 4. bit 3 1-byte(0x00)/2-byte(0x08) object format
 5. bit 4 signed(0x00)/unsigned(0x10) byte data
 6. bit 5 normal(0x00)/page '0'(0x20) reference
 7. bit 6 normal(0x00)/page 'nnn'(0x40) reference
 8. bit 7 LSB byte(0x00)/MSB byte(0x80)

 2. n2 is a byte index into the corresponding (i.e. pre-
 ceeding) T line data (i.e. a pointer to the data to be
 updated by the relocation). The T line data may be
 1-byte or 2-byte byte data format or 2-byte word
 format.

 3. xx xx is the area/symbol index for the area/symbol be-
 ing referenced. the corresponding area/symbol is found
 in the header area/symbol lists.

 The groups of 4 bytes are repeated for each item requiring relo-
 cation in the preceeding T line.

 THE LINKER PAGE 3-20
 ASXXXX VERSION 3.XX LINKING

 3.6.8 P Line

 P 0 0 nn nn n1 n2 xx xx

 The P line provides the paging information to the linker as
 specified by a .setdp directive. The format of the relocation
 information is identical to that of the R line. The correspond-
 ing T line has the following information:
 T xx xx aa aa bb bb

 Where aa aa is the area reference number which specifies the
 selected page area and bb bb is the base address of the page.
 bb bb will require relocation processing if the 'n1 n2 xx xx' is
 specified in the P line. The linker will verify that the base
 address is on a 256 byte boundary and that the page length of an
 area defined with the PAG type is not larger than 256 bytes.

 The linker defaults any direct page references to the first
 area defined in the input REL file. All ASxxxx assemblers will
 specify the _CODE area first, making this the default page area.

 3.6.9 24-Bit and 32-Bit Addressing

 When 24-bit or 32-bit addressing is specified in the file
 format line [XDQ][HL][234] then the S and T Lines have modified
 formats:
 S name Defnnnnnn (24-bit)
 S name Refnnnnnn (24-bit)
 T xx xx xx nn nn nn nn nn ... (24-bit)

 S name Defnnnnnnnn (32-bit)
 S name Refnnnnnnnn (32-bit)
 T xx xx xx xx nn nn nn nn nn ... (32-bit)

 The multibyte formats for byte data replace the 2-byte form
 for 16-bit data with 3-byte or 4-byte data for 24-bit or 32-bit
 data respectively. The 2nd byte format (also named MSB) always
 uses the second byte of the 2, 3, or 4-byte data.

 THE LINKER PAGE 3-21
 ASXXXX VERSION 3.XX LINKING

 3.6.10 ASlink V3.xx Error Messages

 The linker provides detailed error messages allowing the pro-
 grammer to quickly find the errant code. As the linker com-
 pletes pass 1 over the input file(s) it reports any page
 boundary or page length errors as follows:

 ?ASlink-Warning-Paged Area PAGE0 Boundary Error

 and/or

 ?ASlink-Warning-Paged Area PAGE0 Length Error

 where PAGE0 is the paged area.

 During Pass two the linker reads the T, R, and P lines per-
 forming the necessary relocations and outputting the absolute
 code. Various errors may be reported during this process
 The P line processing can produce only one possible error:

 ?ASlink-Warning-Page Definition Boundary Error
 file module pgarea pgoffset
 PgDef t6809l t6809l PAGE0 0001

 The error message specifies the file and module where the .setdp
 direct was issued and indicates the page area and the page
 offset value determined after relocation.

 The R line processing produces various errors:

 ?ASlink-Warning-Byte PCR relocation error for symbol bra2
 ?ASlink-Warning-Unsigned Byte error for symbol two56
 ?ASlink-Warning-Page0 relocation error for symbol ltwo56
 ?ASlink-Warning-Page Mode relocation error for symbol two56
 ?ASlink-Warning-Page Mode relocation error
 ?ASlink-Warning-2K Page relocation error
 ?ASlink-Warning-512K Page relocation error

 These error messages also specify the file, module, area, and
 offset within the area of the code referencing (Refby) and de-
 fining (Defin) the symbol:

 ?ASlink-Warning-Unsigned Byte error for symbol two56
 file module area offset
 Refby t6800l t6800l DIRECT 0015
 Defin tconst tconst . .ABS. 0100

 THE LINKER PAGE 3-22
 ASXXXX VERSION 3.XX LINKING

 If the symbol is defined in the same module as the reference the
 linker is unable to report the symbol name. The assembler list-
 ing file(s) should be examined at the offset from the specified
 area to locate the offending code.

 The errors are:

 1. The byte PCR error is caused by exceeding the pc rela-
 tive byte branch range.

 2. The Unsigned byte error indicates an indexing value was
 negative or larger than 255.

 3. The Page0 error is generated if the direct page vari-
 able is not in the page0 range of 0 to 255.

 4. The page mode error is generated if the direct variable
 is not within the current direct page (6809).

 5. The 2K Page relocation error is generated if the
 destination is not within the current 2K page (8051,
 DS8xCxxx).

 6. The 512K Page relocation error is generated if the
 destination is not within the current 512K page
 (DS80C390).

 THE LINKER Page 3-23
 HINT FILE FORMAT FOR RELOCATED LISTINGS

 3.7 HINT FILE FORMAT FOR RELOCATED LISTINGS

 The hint file is an ascii file containing information to help
 the linker convert the listing file into a relocated listing
 file. Each line in the .hlr file coresponds to a single line in
 the listing file. The text line usually contains 3 or 4 parame-
 ters in the radix selected for the assembler as shown in the
 following table:

 Line Position: 123456789012

 Octal: 111 222 333
 Decimal: 111 222 333
 Hex: 11 22 33

 Parameter 1 specifies the parameters listed in the line.
 A bit is set for each listing option enabled during the
 assembly of the line.

 BIT 0 - LIST_ERR Error Code(s)
 BIT 1 - LIST_LOC Location
 BIT 2 - LIST_BIN Generated Binary Value(s)
 BIT 3 - LIST_EQT Assembler Equate Value
 BIT 4 - LIST_CYC Opcode Cycles
 BIT 5 - LIST_LIN Line Numbers
 BIT 6 - LIST_SRC Assembler Source Code
 BIT 7 - HLR_NLST Listing Inhibited

 Parameter 2 is the internal assembler listing mode
 value specified for this line during the assembly process:

 0 - NLIST No listing
 1 - SLIST Source only
 2 - ALIST Address only
 3 - BLIST Address only with allocation
 4 - CLIST Code
 5 - ELIST Equate only
 6 - ILIST IF conditional evaluation

 Parameter 3 is the number of output bytes listed
 for this line.

 The 4th parameter is only output if an equate references a
 value in a different area. The area name is output in the fol-
 lowing format following the 3 parameters described above:

 Line Position: 123456789012

 THE LINKER PAGE 3-24
 HINT FILE FORMAT FOR RELOCATED LISTINGS

 Area Name: equatearea

 When the line number is present it is prepended to the 3 or 4
 parameters described above. The line number is always in
 decimal in the following format:

 Line Position: 1234567

 Decimal: LLLLL

 Thus the four formats (for each radix) that may be present in
 a .hlr file are:

 Line Position: 123456789012345678901234567890

 11 22 33
 11 22 33 equatearea
 LLLLL 11 22 33
 LLLLL 11 22 33 equatearea

 The linker understands these formats without any user inter-
 action.

 If a hint file does not exist then the linker attempts to
 convert the list file to a relocated list file using some basic
 assumptions about the parameters listed in each line. The con-
 version without a hint file requires at least these listing
 parameters: LOC, BIN, MEB, and ME. The 'equate' values will
 not be updated.

 THE LINKER Page 3-25
 INTEL IHX OUTPUT FORMAT

 3.8 INTEL IHX OUTPUT FORMAT (16-BIT)

 Record Mark Field - This field signifies the start of a
 record, and consists of an ascii colon
 (:).

 Record Length Field - This field consists of two ascii
 characters which indicate the number of
 data bytes in this record. The
 characters are the result of converting
 the number of bytes in binary to two
 ascii characters, high digit first. An
 End of File record contains two ascii
 zeros in this field.

 Load Address Field - This field consists of the four ascii
 characters which result from converting
 the the binary value of the address in
 which to begin loading this record. The
 order is as follows:

 High digit of high byte of address.
 Low digit of high byte of address.
 High digit of low byte of address.
 Low digit of low byte of address.

 In an End of File record this field con-
 sists of either four ascii zeros or the
 program entry address.

 Record Type Field - This field identifies the record type,
 which is either 0 for data, 1 for an End
 of File, or 3 for a start address
 record. It consists of two ascii
 characters, with the high digit of the
 record type first, followed by the low
 digit of the record type. The default
 start address record type is 3, however
 the -i1 option can override the default
 and use the type 1 record.

 Data Field - This field consists of the actual data,
 converted to two ascii characters, high
 digit first. There are no data bytes in
 the End of File record.

 Checksum Field - The checksum field is the 8 bit binary
 sum of the record length field, the load
 address field, the record type field,

 THE LINKER PAGE 3-26
 INTEL IHX OUTPUT FORMAT (16-BIT)

 and the data field. This sum is then
 negated (2's complement) and converted
 to two ascii characters, high digit
 first.

 THE LINKER Page 3-27
 INTEL I86 OUTPUT FORMAT

 3.9 INTEL I86 OUTPUT FORMAT (24 OR 32-BIT)

 Record Mark Field - This field signifies the start of a
 record, and consists of an ascii colon
 (:).

 Record Length Field - This field consists of two ascii
 characters which indicate the number of
 data bytes in this record. The
 characters are the result of converting
 the number of bytes in binary to two
 ascii characters, high digit first. An
 End of File record contains two ascii
 zeros in this field.

 Load Address Field - This field consists of the four ascii
 characters which result from converting
 the the binary value of the address in
 which to begin loading this record. The
 order is as follows:

 High digit of high byte of address.
 Low digit of high byte of address.
 High digit of low byte of address.
 Low digit of low byte of address.

 In an End of File record this field con-
 sists of either four ascii zeros or the
 program entry address.

 Record Type Field - This field identifies the record type,
 which is either 0 for data, 1 for an End
 of File, 3 for a start address, or 4 for
 a segment record. It consists of two
 ascii characters, with the high digit of
 the record type first, followed by the
 low digit of the record type. The
 default start address record type is 3,
 however the -i1 option can override the
 default and use the type 1 record.

 Data Field - This field consists of the actual data,
 converted to two ascii characters, high
 digit first. There are no data bytes in
 the End of File record.

 Checksum Field - The checksum field is the 8 bit binary
 sum of the record length field, the load
 address field, the record type field,

 THE LINKER PAGE 3-28
 INTEL I86 OUTPUT FORMAT (24 OR 32-BIT)

 and the data field. This sum is then
 negated (2's complement) and converted
 to two ascii characters, high digit
 first.

 THE LINKER Page 3-29
 MOTOROLA S1-S9 OUTPUT FORMAT

 3.10 MOTOROLA S1-S9 OUTPUT FORMAT (16-BIT)

 Record Type Field - This field signifies the start of a
 record and identifies the the record
 type as follows:

 Ascii S1 - Data Record
 Ascii S9 - End of File Record

 Record Length Field - This field specifies the record length
 which includes the address, data, and
 checksum fields. The 8 bit record
 length value is converted to two ascii
 characters, high digit first.

 Load Address Field - This field consists of the four ascii
 characters which result from converting
 the the binary value of the address in
 which to begin loading this record. The
 order is as follows:

 High digit of high byte of address.
 Low digit of high byte of address.
 High digit of low byte of address.
 Low digit of low byte of address.

 In an End of File record this field con-
 sists of either four ascii zeros or the
 program entry address.

 Data Field - This field consists of the actual data,
 converted to two ascii characters, high
 digit first. There are no data bytes in
 the End of File record.

 Checksum Field - The checksum field is the 8 bit binary
 sum of the record length field, the load
 address field, and the data field. This
 sum is then complemented (1's comple-
 ment) and converted to two ascii
 characters, high digit first.

 THE LINKER Page 3-30
 MOTOROLA S2-S8 OUTPUT FORMAT

 3.11 MOTOROLA S2-S8 OUTPUT FORMAT (24-BIT)

 Record Type Field - This field signifies the start of a
 record and identifies the the record
 type as follows:

 Ascii S2 - Data Record
 Ascii S8 - End of File Record

 Record Length Field - This field specifies the record length
 which includes the address, data, and
 checksum fields. The 8 bit record
 length value is converted to two ascii
 characters, high digit first.

 Load Address Field - This field consists of the six ascii
 characters which result from converting
 the the binary value of the address in
 which to begin loading this record. The
 order is as follows:

 High digit of 3rd byte of address.
 Low digit of 3rd byte of address.
 High digit of high byte of address.
 Low digit of high byte of address.
 High digit of low byte of address.
 Low digit of low byte of address.

 In an End of File record this field con-
 sists of either six ascii zeros or the
 program entry address.

 Data Field - This field consists of the actual data,
 converted to two ascii characters, high
 digit first. There are no data bytes in
 the End of File record.

 Checksum Field - The checksum field is the 8 bit binary
 sum of the record length field, the load
 address field, and the data field. This
 sum is then complemented (1's comple-
 ment) and converted to two ascii
 characters, high digit first.

 THE LINKER Page 3-31
 MOTOROLA S3-S7 OUTPUT FORMAT

 3.12 MOTOROLA S3-S7 OUTPUT FORMAT (32-BIT)

 Record Type Field - This field signifies the start of a
 record and identifies the the record
 type as follows:

 Ascii S3 - Data Record
 Ascii S7 - End of File Record

 Record Length Field - This field specifies the record length
 which includes the address, data, and
 checksum fields. The 8 bit record
 length value is converted to two ascii
 characters, high digit first.

 Load Address Field - This field consists of the eight ascii
 characters which result from converting
 the the binary value of the address in
 which to begin loading this record. The
 order is as follows:

 High digit of 4th byte of address.
 Low digit of 4th byte of address.
 High digit of 3rd byte of address.
 Low digit of 3rd byte of address.
 High digit of high byte of address.
 Low digit of high byte of address.
 High digit of low byte of address.
 Low digit of low byte of address.

 In an End of File record this field con-
 sists of either eight ascii zeros or the
 program entry address.

 Data Field - This field consists of the actual data,
 converted to two ascii characters, high
 digit first. There are no data bytes in
 the End of File record.

 Checksum Field - The checksum field is the 8 bit binary
 sum of the record length field, the load
 address field, and the data field. This
 sum is then complemented (1's comple-
 ment) and converted to two ascii
 characters, high digit first.

 THE LINKER Page 3-32
 TANDY COLOR COMPUTER DISK BASIC BINARY FORMAT

 3.13 TANDY COLOR COMPUTER DISK BASIC FORMAT

 Record Preamble - This field is either $00 (for start of
 new record) or $FF (for last record in
 file).

 Record Length Field - This field specifies the number of data
 bytes which follows the address field.
 The length is in binary MSB to LSB
 order.

 16-Bit Length - 2-bytes
 24-Bit Length - 3-bytes
 32-Bit Length - 4-bytes

 Load Address Field - This field consists of the address where
 the record will be loaded into memory.
 The address is in binary MSB to LSB
 order.

 16-Bit Address - 2-bytes
 24-Bit Address - 3-bytes
 32-Bit Address - 4-bytes

 Data Field - This field consists of the actual binary
 data.

 After the last code segment, a final record like the one
 above is placed. In this final segment, the Record Preamble is
 $FF, the Record Length Field is $0000 and the Load Adress Field
 is the execution address.

 CHAPTER 4

 BUILDING ASXXXX AND ASLINK

 The assemblers and linker have been successfully compiled for
 Linux, DOS, and various flavors of Windows using the Linux GCC,
 the Cygwin environment, the DJGPP environment, and the graphical
 user interfaces and command line environments of
 MS Visual C++ V6.0, MS Visual Studio 2005, 2010, 2013, 2015,
 Open Watcom V1.9, Symantec C/C++ V7.2, and Turbo C 3.0.

 Makefiles for Linux, Cygwin, DJGPP, project files and a
 makefile for Turbo C and psuedo makefiles and project files for
 VC6, VS2005, VS2010, VS2013, VS2015, Open Watcom and Symantec
 are available to build all the assemblers and the linker.

 Unpack the asxv5pxx.zip file into an appropriate directory
 using the utility appropriate to your environment. For DOS or
 Windows the following command line will unpack the distribution
 zip file:

 pkunzip -d asxv5pxx.zip

 The distribution file has been packed with DOS style end of
 lines (CR/LF), and UPPER CASE file names. The Linux make file
 assumes all lower case directories and file names. For Linux
 the unpacking utility you choose should have an option to force
 all lower case directories / file names and convert the ascii
 files to local format. On most systems the following command
 should do the trick:

 unzip -L -a asxv5pxx.zip

 Some systems may require a -LL option to force all lower case.

 The distribution will be unpacked into the base directory
 'asxv5pxx' which will contain source directories for each

 BUILDING ASXXXX AND ASLINK Page 4-2

 supported processor (as6800, asz80, ...), the machine indepen-
 dent source (asxxsrc), the linker source (linksrc), and the
 miscellaneous sources (asxxmisc). Other directories include the
 documentation (asxdoc), test file directory (asxtst), html do-
 cumentation (asxhtml), NoICE support files (noice), various
 debug monitors that can be assembled with the ASxxxx assemblers
 (asmasm), project files for an application that uses the AS6809
 assembler and ASlink linker (project), and the packaging direc-
 tory (zipper).

 4.1 BUILDING ASXXXX AND ASLINK WITH LINUX

 The Linux build directory is /asxv5pxx/asxmak/linux/build.
 The makefile in this directory is compatible with the Linux GNU
 make and GCC. The command

 make clean

 will remove all the current executable files in directory
 /asxv5pxx/asxmak/linux/exe and all the compiled object modules
 from the /asxv5pxx/asxmak/linux/build directory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 4.2 BUILDING ASXXXX AND ASLINK UNDER CYGWIN

 The Cygwin build directory is \asxv5pxx\asxmak\cygwin\build.
 The makefile in this directory is compatible with the Cygwin GNU
 make and GCC. The command

 make clean

 will remove all the current executable files in directory
 \asxv5pxx\asxmak\cygwin\exe and all the compiled object modules
 from the \asxv5pxx\asxmak\cygwin\build directory. The command

 BUILDING ASXXXX AND ASLINK PAGE 4-3
 BUILDING ASXXXX AND ASLINK UNDER CYGWIN

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 4.3 BUILDING ASXXXX AND ASLINK WITH DJGPP

 The DJGPP build directory is \asxv5pxx\asxmak\djgpp\build.
 The makefile in this directory is compatible with the DJGPP GNU
 make and GCC. The command

 make clean

 will remove all the current executable files in directory
 \asxv5pxx\asxmak\djgpp\exe and all the compiled object modules
 from the \asxv5pxx\asxmak\djgpp\build directory. The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 4.4 BUILDING ASXXXX AND ASLINK WITH BORLAND'S TURBO C++ 3.0

 The Borland product is available in the Borland Turbo C++
 Suite which contains C++ Builder 1.0, Turbo C++ 4.5 for Windows
 and Turbo C++ 3.0 for DOS. The DOS IDE will install and run on
 x86 (16 or 32 bit) versions of Windows (not x64 versions).

 BUILDING ASXXXX AND ASLINK PAGE 4-4
 BUILDING ASXXXX AND ASLINK WITH BORLAND'S TURBO C++ 3.0

 4.4.1 Graphical User Interface

 Each ASxxxx Assembler has two project specific files
 (*.dsk and *.prj) located in the subdirectory
 \asxv5pxx\asxmak\turboc30\build. You must enter the .prj
 filename into the Turbo C++ IDE: enter Options->Directories and
 change the include and output directories to match your confi-
 guration. After these changes have been made you will be able
 to compile the selected project. These changes must be manually
 entered for each project.

 4.4.2 Command Line Interface

 Before the command line interface can be used you must per-
 form the steps outlined in the 'Graphical User Interface' in-
 structions above for each project you wish to build.

 Open a command prompt window in the
 \asxv5pxx\asxmak\turboc30\build directory. Assuming the Turbo C
 compiler has been installed in the default location (C:\TC) the
 file _setpath.bat will set the PATH variable. If this is not
 the case then the line

 PATH=C:\TC;C:\TC\BIN;C:\TC\INCLUDE

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\turboc30\build\ directory and the executable
 files will be placed in the \asxv5pxx\asxmak\turboc30\exe direc-
 tory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The Turbo C make utility uses the information in the

 BUILDING ASXXXX AND ASLINK PAGE 4-5
 BUILDING ASXXXX AND ASLINK WITH BORLAND'S TURBO C++ 3.0

 corresponding .prj and .dsk files to compile and link the pro-
 grams.

 The file _makeall.bat found in the directory can also be used
 to invoke the Turbo C command line compiler. The _makeall.bat
 file calls the _setpath.bat file to set the path to the compiler
 directories in the environment variable PATH and then invokes
 'make all'.

 4.5 BUILDING ASXXXX AND ASLINK WITH MS VISUAL C++ 6.0

 4.5.1 Graphical User Interface

 Each ASxxxx Assembler has a VC6 project file (*.dsw) located
 in a subdirectory of \asxv5pxx\asxmak\vc6\build. Simply enter
 this project filename into the VC6 IDE and build/rebuild the as-
 sembler.

 4.5.2 Command Line Interface

 Open a command prompt window in the
 \asxv5pxx\asxmak\vc6\build directory. The file make.bat found
 in the directory can be used to invoke the VC6 command line com-
 piler. The make.bat file assumes that the Visual C++ compiler
 has been installed in the default location. If this is not the
 case then the line

 SET MS$DEV="C:\Program Files\Microsoft Visual Studio\
 Common\MSDev98\Bin\msdev.exe"

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\vc6\build\as----\release directory and the exe-
 cutable files will be placed in the \asxv5pxx\asxmak\vc6\exe
 directory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink

 BUILDING ASXXXX AND ASLINK PAGE 4-6
 BUILDING ASXXXX AND ASLINK WITH MS VISUAL C++ 6.0

 program, and the utility programs asxscn and asxcnv. The make
 file can make a single program by invoking make with the
 specific assembler, linker, or utility you wish to build:

 make aslink

 The VC6 command line compiler uses the information in the cor-
 responding .dsw/.dsp files to compile and link the programs.

 The command 'make clean' is not required or valid as a make
 of anything does a complete rebuild of the program.

 4.6 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2005

 4.6.1 Graphical User Interface

 Each ASxxxx Assembler has a VS2005 project file (*.vcproj)
 located in a subdirectory of \asxv5pxx\asxmak\vs05\build. Sim-
 ply enter this project filename into the VS2005 IDE and
 build/rebuild the assembler.

 4.6.2 Command Line Interface

 Open a command prompt window in the
 \asxv5pxx\asxmak\vs05\build directory. The file make.bat found
 in the directory can be used to invoke the VS2005 command line
 compiler. The make.bat file assumes that the Visual C++ com-
 piler has been installed in the default location. If this is
 not the case then the line

 SET VC$BUILD="C:\Program Files\Microsoft Visual Studio 8\
 Common\MSDev98\Bin\msdev.exe"

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\vs05\build\as----\release directory and the ex-
 ecutable files will be placed in the \asxv5pxx\asxmak\vs05\exe
 directory.

 BUILDING ASXXXX AND ASLINK PAGE 4-7
 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2005

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The VS2005 command line compiler uses the information in the
 corresponding .vcproj file to compile and link the programs.

 The command 'make clean' is not required or valid as a make
 of anything does a complete rebuild of the program.

 4.7 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2010

 4.7.1 Graphical User Interface

 Each ASxxxx Assembler has a VS2010 project file (*.vcxproj)
 located in a subdirectory of \asxv5pxx\asxmak\vs10\build. Sim-
 ply enter this project filename into the VS2010 IDE and
 build/rebuild the assembler.

 4.7.2 Command Line Interface

 Open a command prompt window in the
 \asxv5pxx\asxmak\vs10\build directory. The file make.bat found
 in the directory can be used to invoke the VS2010 command line
 compiler. The make.bat file assumes that the Visual C++ com-
 piler has been installed in the default location. If this is
 not the case then the line

 call "c:\Program Files (x86)\Microsoft Visual Studio 10.0\
 VC\bin\vcvars32.bat"

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\vs10\build\as----\release directory and the ex-
 ecutable files will be placed in the \asxv5pxx\asxmak\vs10\exe

 BUILDING ASXXXX AND ASLINK PAGE 4-8
 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2010

 directory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The VS2010 command line compiler uses the information in the
 corresponding .vcxproj file to compile and link the programs.

 The command 'make clean' is not required or valid as a make
 of anything does a complete rebuild of the program.

 4.8 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2013

 4.8.1 Graphical User Interface

 Each ASxxxx Assembler has a VS2013 project file (*.vcxproj)
 located in a subdirectory of \asxv5pxx\asxmak\vs13\build. Sim-
 ply enter this project filename into the VS2013 IDE and
 build/rebuild the assembler.

 4.8.2 Command Line Interface

 Open a command prompt window in the
 \asxv5pxx\asxmak\vs13\build directory. The file make.bat found
 in the directory can be used to invoke the VS2013 command line
 compiler. The make.bat file assumes that the Visual C++ com-
 piler has been installed in the default location. If this is
 not the case then the line

 call "c:\Program Files (x86)\Microsoft Visual Studio 12.0\
 VC\bin\vcvars32.bat"

 BUILDING ASXXXX AND ASLINK PAGE 4-9
 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2013

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\vs13\build\as----\release directory and the ex-
 ecutable files will be placed in the \asxv5pxx\asxmak\vs13\exe
 directory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The VS2013 command line compiler uses the information in the
 corresponding .vcxproj file to compile and link the programs.

 The command 'make clean' is not required or valid as a make
 of anything does a complete rebuild of the program.

 4.9 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2015

 4.9.1 Graphical User Interface

 Each ASxxxx Assembler has a VS2015 project file (*.vcxproj)
 located in a subdirectory of \asxv5pxx\asxmak\vs15\build. Sim-
 ply enter this project filename into the VS2015 IDE and
 build/rebuild the assembler.

 BUILDING ASXXXX AND ASLINK PAGE 4-10
 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2015

 4.9.2 Command Line Interface

 Open a command prompt window in the
 \asxv5pxx\asxmak\vs15\build directory. The file make.bat found
 in the directory can be used to invoke the VS2015 command line
 compiler. The make.bat file assumes that the Visual C++ com-
 piler has been installed in the default location. If this is
 not the case then the line

 call "c:\Program Files (x86)\Microsoft Visual Studio 14.0\
 VC\bin\vcvars32.bat"

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\vs15\build\as----\release directory and the ex-
 ecutable files will be placed in the \asxv5pxx\asxmak\vs15\exe
 directory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The VS2015 command line compiler uses the information in the
 corresponding .vcxproj file to compile and link the programs.

 The command 'make clean' is not required or valid as a make
 of anything does a complete rebuild of the program.

 BUILDING ASXXXX AND ASLINK PAGE 4-11
 BUILDING ASXXXX AND ASLINK WITH OPEN WATCOM V1.9

 4.10 BUILDING ASXXXX AND ASLINK WITH OPEN WATCOM V1.9

 4.10.1 Graphical User Interface

 Each ASxxxx Assembler has a set of project files (.prj, .tgt,
 .mk, .mk1, and .lk1) located in the subdirectory
 \asxv5pxx\asxmak\watcom\build. You will have to edit the pro-
 ject files to match your local file locations.

 4.10.2 Command Line Interface

 Open a command prompt window in the
 \asxv5pxx\asxmak\watcom\build directory. Assuming the Watcom
 compiler has been installed in the default location (C:\WATCOM)
 the file _setpath.bat will set the PATH variable. If this is
 not the case then the line

 PATH=C:\WATCOM\BINNT;C:\WATCOM\BINW

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\watcom\build\ directory and the executable
 files will be placed in the \asxv5pxx\asxmak\watcom\exe direc-
 tory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The Watcom command line compiler wmake.exe uses the information
 in the corresponding project files to compile and link the pro-
 grams.

 BUILDING ASXXXX AND ASLINK PAGE 4-12
 BUILDING ASXXXX AND ASLINK WITH OPEN WATCOM V1.9

 The file _makeall.bat found in the directory can also be used
 to invoke the Watcom command line compiler. The _makeall.bat
 file calls the _setpath.bat file to set the path to the compiler
 directories in the environment variable PATH and then invokes
 'make all'.

 The command 'make clean' is not required or valid as a make
 of anything does a complete rebuild of the program.

 4.11 BUILDING ASXXXX AND ASLINK WITH SYMANTEC C/C++ V7.2

 The Symantec product is no longer available but is included
 for historical reasons (the final version, 7.5, was introduced
 in 1996). The product had an excellent graphical user inter-
 face, built in editor, project manager, and supported DOS, Ex-
 tended DOS (the executable contained a built in DOS extender
 which was rendered unusable in Windows 2000, after service pack
 2, or in Windows XP), Win95, and Windows NT.

 4.11.1 Graphical User Interface

 Each ASxxxx Assembler has a series of project specific files
 (*.bro, *.def, *.dpd, *.lnk, *.mak, *.opn, and *.prj) located in
 in the subdirectory \asxv5pxx\asxmak\symantec\build. You must
 enter the .prj filename into the Symantec IDE and then select
 Project->Settings->Directories and change the include, target,
 and compiler output directories to match your configuration.
 After these changes have been made you will be able to compile
 the selected project. These changes must be manually entered
 for each project.

 4.11.2 Command Line Interface

 Before the command line interface can be used you must per-
 form the steps outlined in the 'Graphical User Interface' in-
 structions above for each project you wish to build.

 Open a command prompt window in the
 \asxv5pxx\asxmak\symantec\build directory. The file make.bat
 found in the directory can be used to invoke the Symantec com-
 mand line compiler. The make.bat file assumes that the path to
 the compiler directories has been set in the environment
 variable PATH. Assuming the Symantec compiler has been

 BUILDING ASXXXX AND ASLINK PAGE 4-13
 BUILDING ASXXXX AND ASLINK WITH SYMANTEC C/C++ V7.2

 installed in the default location (C:\SC) the file _setpath.bat
 will set the PATH variable. If this is not the case then the
 line

 PATH=C:\SC;C:\SC\BIN;C:\SC\INCLUDE;C:\SC\LIB

 must be changed to match your environment. The compiled object
 code modules will be placed in the
 \asxv5pxx\asxmak\symantec\build directory and the executable
 files will be placed in the \asxv5pxx\asxmak\symantec\exe direc-
 tory.

 The command

 make all

 will compile and link all the ASxxxx assemblers, the ASlink pro-
 gram, and the utility programs asxscn and asxcnv. The make file
 can make a single program by invoking make with the specific as-
 sembler, linker, or utility you wish to build:

 make aslink

 The Symantec make utility , smake.exe, uses the information in
 the corresponding .mak files to compile and link the programs.

 The file _makeall.bat found in the directory can also be used
 to invoke the Symantec command line compiler. The _makeall.bat
 file calls the _setpath.bat file to set the path to the compiler
 directories in the environment variable PATH and then invokes
 'make all'.

 4.12 THE _CLEAN.BAT AND _PREP.BAT FILES

 Each of the build directories have two maintenance files:
 _prep.bat and _clean.bat. The command file _prep.bat prepares
 the particular compiler directories for distribution by removing
 all exteraneous files but keeping the final compiled execut-
 ables. The _clean.bat command file performs the same function
 as _prep.bat and removes the compiled executables.

 APPENDIX A

 ASXSCN LISTING FILE SCANNER

 The program ASXSCN is a debugging utility program used to
 verify ASxxxx assembler code generation. The program may be in-
 voked with any of the following options:

 Usage: [-dqx234i] file
 d decimal listing
 q octal listing
 x hex listing (default)
 2 16-Bit address (default)
 3 24-Bit address
 4 32-Bit address
 i ignore relocation flags

 Select one of the -d, -q, or -x options to match the listing
 file format and select only one of the -2, -3, or -4 options to
 match the addressing range of the listing file. The -i option
 inhibits the verification of the assembler relocation flags
 generated by the ASxxxx assemblers -f or -ff options.

 Each source assembly line selected for verification must in-
 clude the expected output code in the comment field of the line.
 The following has been extracted from the ASF2MC8 test file
 tf2mc8.asm:

 reti ; 30
 call ext ; 31s12r34
 subc a ; 32
 subcw a ; 33
 subc a,#v22 ; 34r22
 subc a,*dir ; 35*33
 subc a,@ix+off ; 36r44
 subc a,@ep ; 37

 ASXSCN LISTING FILE SCANNER Page A-2

 The r, s, and * are specific address relocation flags created
 when the -ff option is specified with any ASxxxx assembler.

 Invoking the assembler:

 asf2mc8 -gloaxff tf2mc8

 produces a listing file:

 033B 30 677 reti ; 30
 033C 31s12r34 678 call ext ; 31s12r34
 033F 32 679 subc a ; 32
 0340 33 680 subcw a ; 33
 0341 34r22 681 subc a,#v22 ; 34r22
 0343 35*33 682 subc a,*dir ; 35*33
 0345 36r44 683 subc a,@ix+off ; 36r44
 0347 37 684 subc a,@ep ; 37

 The expected code can be compared with the generated code by
 invoking the scanning program:

 asxscn tf2mc8.lst
 0 code difference(s) found in file tf2mc8.lst

 The assembled code can also be linked:

 aslink -u ...options... t2fc8

 to create an updated listing file:

 033B 30 677 reti ; 30
 033C 31 12 34 678 call ext ; 31s12r34
 033F 32 679 subc a ; 32
 0340 33 680 subcw a ; 33
 0341 34 22 681 subc a,#v22 ; 34r22
 0343 35 33 682 subc a,*dir ; 35*33
 0345 36 44 683 subc a,@ix+off ; 36r44

 which resolves all relocations and removes the relocation flags.
 This file can also be verified:

 asxscn -i tf2mc8.rst
 0 code difference(s) found in file tf2mc8.rst

 The verification of both the .lst and .rst files from the
 same assembler test file requires careful definition of external
 variables so that the assembler listing file and the linker
 listing file have the same code values.

 APPENDIX B

 ASXCNV LISTING CONVERTER

 The program ASXCNV is a debugging utility program used to
 create an assembler file with verification data. The program
 may be invoked with any of the following options:

 Usage: [-dqx234] file
 d decimal listing
 q octal listing
 x hex listing (default)
 2 16-Bit address (default)
 3 24-Bit address
 4 32-Bit address

 Select one of the -d, -q, or -x options to match the listing
 file format and select only one of the -2, -3, or -4 options to
 match the addressing range of the listing file.

 Each source assembly line which creates output data will have
 the data appended to the source line as a comment. The appended
 comment will contain the relocation codes if they are present in
 the listing file. Any existing comment on the line will be
 overwritten.

 Given an existing listing file, a.lst, containing:

 033B 30 677 reti
 033C 31s12r34 678 call ext
 033F 32 679 subc a
 0340 33 680 subcw a
 0341 34r22 681 subc a,#v22
 0343 35*33 682 subc a,*dir
 0345 36r44 683 subc a,@ix+off
 0347 37 684 subc a,@ep

 ASXCNV LISTING CONVERTER Page B-2

 A converted listing file can be created using the following
 command:

 asxcnv -d2 a.lst

 The created output file, a.out, is a new assembly file now con-
 tain the verification data in the comments:

 reti ; 30
 call ext ; 31s12r34
 subc a ; 32
 subcw a ; 33
 subc a,#v22 ; 34r22
 subc a,*dir ; 35*33
 subc a,@ix+off ; 36r44
 subc a,@ep ; 37

 APPENDIX C

 S19OS9 CONVERSION UTILITY

 C.1 BACKGROUND

 OS9 is an Operating System for the TRS-80/Tandy Color Com-
 puters based on the 6809/6309 processors. The open source ver-
 sion of the OS9 operating system is NitrOS-9 and is available
 at:

 The NitrOS-9 Project
 http://www.nitros9.org

 The s19os9 utility package contains the following:

 1) OS9 definition files and an OS9 assembler module
 which creates the OS9 header, code and data areas,
 and the module CRC block:

 os9_mod.def OS9 Module Definitions
 os9_sys.def OS9 Sytem Definitions
 os9_mod.asm OS9 Module Begin / End Code

 2) a program, s19os9, to post-process assembled OS9
 modules from S19 format into binary OS9 modules
 with the appropriate header checksum and module
 CRC values calculated.

 The file os9_mod.def contains module definitions used in the
 header of OS9 binary files and was derived from the NitrOS-9
 file os9_mod.def.

 S19OS9 CONVERSION UTILITY PAGE C-2
 BACKGROUND

 The file os9_sys.def contains system definitions pertaining
 to system service request codes, system reserved calls, I/O ser-
 vice request calls, file access modes, signal codes, get/put
 status codes, module offsets, and error codes. This file was
 derived from the NitrOS-9 file os9defs.a.

 C.2 CREATING AN OS9 MODULE

 This section describes how to create an OS9 module using the
 files os9_mod.def, os9_sys.def, and os9_mod.asm.

 When creating an OS9 module certain parameters are required
 by the os9_mod.asm file to create the appropriate headers. The
 list of supported parameters is listed here:

 Basic Header:

 .define OS9_ModNam, "Module_Name"
 .define OS9_Typ, "Type_Value"
 .define OS9_Lng, "Language_Value"
 .define OS9_Att, "Attributes_Value"
 .define OS9_Rev, "Revision_Value"

 General Parameters:
 .define OS9_ModExe, "Module Entry Point Offset"
 .define OS9_ModMem, "Module Permanent Storage"

 Device Driver Parameters:

 .define OS9_Mod, "Module Mode"

 Descriptor Parameters:

 .define OS9_FMN, "Device Driver Name Label"
 .define OS9_DDR, "Device Driver Name Label"
 .define OS9_AbsAdr02, "Device Absolute Address <23:16>"
 .define OS9_AbsAdr01, "Device Absolute Address <15:08>"
 .define OS9_AbsAdr00, "Device Absolute Address <07:00>"
 .define OS9_Opt, "Descriptor Option"
 .define OS9_DType, "Descriptor Data Type"

 The OS9 Module file os9_mod.asm supports the creation of the
 following simple module types:

 SYSTM - System Module
 PRGRM - Program Module

 S19OS9 CONVERSION UTILITY PAGE C-3
 CREATING AN OS9 MODULE

 SBTRN - Subroutine Module
 DRIVR - Device Driver Module
 FLMGR - File Manager Module
 DEVIC - Device Descriptor Module

 The following code shows the steps required when creating an
 OS9 program using the os9_mod.asm file. os9_mod.asm loads the
 os9_mod.def and os9_sys.def files, defines the software inter-
 rupt macro os9, and creates the os9 program header and crc
 blocks.

 C.2.1 Step 1: Define Header Values

 ;****
 ; Step 1:
 ; Use the .define assembler directive
 ; to insert the parameters into the
 ; os9_mod.asm's header structure.
 ;
 ; Note: See the file os9_mod.asm for
 ; parameter names and definitions.
 ;
 .title List Program

 .sbttl Header Definitions

 .define OS9_ModNam, "LSTNAM"
 .define OS9_Typ, "PRGRM"
 .define OS9_Lng, "OBJCT"
 .define OS9_Att, "REENT"
 .define OS9_Rev, "1"
 .define OS9_ModExe, "LSTENT"
 .define OS9_ModMem, "LSTMEM"

 C.2.2 Step 2: Create The Module Header

 ; Step 2:
 ; Set the symbol OS9_Module equal to 1
 ; and .include the file os9_mod.asm.

 OS9_Module = 1 ; OS9 Module Begin (==1)
 ; .include "os9_mod.asm"
 .nlist
 .include "os9_mod.asm"
 .list

 S19OS9 CONVERSION UTILITY PAGE C-4
 CREATING AN OS9 MODULE

 With OS9_Module = 1 the following code is inserted into the
 code stream:

 .define os9, "swi2 .byte" ; os9 macro

 ; Include OS9 Definition Files
 ; os9_sys.def Listing Disabled
 .nlist
 .include "os9_sys.def"
 .list
 ; os9_mod.def Listing Disabled
 .nlist
 .include "os9_mod.def"
 .list

 ; Define The OS9 Module Bank and Areas.
 ;
 ; Place the module program code in area OS9_Module
 ; and the module data in area OS9_Data.
 ;

 .bank OS9_Module (BASE=0,FSFX=_OS9)
 .area OS9_Module (REL,CON,BANK=OS9_Module)

 .bank OS9_Data (BASE=0,FSFX=_DAT)
 .area OS9_Data (REL,CON,BANK=OS9_Data)

 .area OS9_Module

 OS9_ModBgn = .

 .byte OS9_ID0, OS9_ID1
 ; OS9 Module Sync Bytes
 .word OS9_ModEnd - OS9_ModBgn
 ; Length (Includes 3 CRC Bytes)
 .word OS9_ModNam - OS9_ModBgn
 ; Offset to Module Name String
 .byte OS9_Typ | OS9_Lng
 ; Type / Language
 .byte OS9_Att | OS9_Rev
 ; Attributes / Revision
 .byte 0xFF
 ; Header Parity
 .word OS9_ModExe - OS9_ModBgn
 ; Execution Entry Offset

 S19OS9 CONVERSION UTILITY PAGE C-5
 CREATING AN OS9 MODULE

 .word OS9_ModMem
 ; Storage Requirement
 ; OS9_ModData
 ; Module Data

 C.2.3 Step 3: Allocate Storage

 The next step is to add the program data storage space for
 the program. Note that the space is only allocated here and no
 initialization is done.

 ;*****-----*****-----*****-----*****-----*****-----*****
 ; LIST UTILITY COMMAND
 ; Syntax: list <pathname>
 ; COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT

 ; Step 3:
 ; Allocate the storage in .area OS9_Data

 .area OS9_Data

 ; STATIC STORAGE OFFSETS

 BUFSIZ .equ 200 ; size of input buffer

 Base = .
 IPATH = . - Base
 .rmb 1 ; input path number
 PRMPTR = . - Base
 .rmb 2 ; parameter pointer
 BUFFER = . - Base
 .rmb BUFSIZ ; allocate line buffer
 .rmb 200 ; allocate stack
 .rmb 200 ; room for parameter list
 LSTMEM = . - Base

 S19OS9 CONVERSION UTILITY PAGE C-6
 CREATING AN OS9 MODULE

 C.2.4 Step 4: Insert The Program Code

 Once the data storage space has been allocated then the pro-
 gram code is added to .area OS9_Module:

 ; Step 4:
 ; Insert the Module Code into .area OS9_Module

 .area OS9_Module

 LSTNAM: .strs "List" ; String with last byte
 ; or'd with 0x80
 LSTENT: stx *PRMPTR ; save parameter ptr
 lda #READ. ; select read access mode
 os9 I$OPEN ; open input file
 bcs LIST50 ; exit if error
 sta *IPATH ; save input path number
 stx *PRMPTR ; save updated param ptr
 LIST20: lda *IPATH ; load input path number
 leax *BUFFER,U ; load buffer pointer
 ldy #BUFSIZ ; maximum bytes to read
 os9 I$READLN ; read line of input
 bcs LIST30 ; exit if error
 lda #1 ; load std. out. path #
 os9 I$WRITLN ; output line
 bcc LIST20 ; Repeat if no error
 bra LIST50 ; exit if error

 LIST30: cmpb #E$EOF ; at end of file?
 bne LIST50 ; branch if not
 lda *IPATH ; load input path number
 os9 I$CLOSE ; close input path
 bcs LIST50 ; ..exit if error
 ldx *PRMPTR ; restore parameter ptr
 lda ,X
 cmpa #0x0D ; End of parameter line?
 bne LSTENT ; ..no, list next file
 clrb
 LIST50: os9 F$EXIT ; ... terminate

 S19OS9 CONVERSION UTILITY PAGE C-7
 CREATING AN OS9 MODULE

 C.2.5 Step 5: End Assembly By Inserting CRC

 ; Step 5:
 ; Set the symbol OS9_Module equal to 0
 ; and .include the file os9_mod.asm.

 OS9_Module = 0 ; OS9 Module End (==0)
 ; .include "os9_mod.asm"
 .nlist
 .include "os9_mod.asm"
 .list

 .end

 With OS9_Module = 0 the following code is the last code in-
 serted into the code stream:

 .area OS9_Module

 ; The 3-Byte Module CRC
 .byte OS9_CRC0, OS9_CRC1, OS9_CRC2

 OS9_ModEnd = . ; End of OS9 Module

 C.3 THE CONVERSION UTILITY: S19OS9

 Once you have assembled your module into an .S19 file use the
 program s19os9 to create the binary OS9 module file.

 The program s19os9 is invoked from the command line:

 s19os9 mod.s19 -o mod.bin

 where mod.s19 is the input S19 file and mod.bin is the OS9
 binary output file.

 The conversion utility s19os9 reads the .S19 file into an in-
 ternal buffer (48K bytes maximum). As each line is read from
 the .S19 file the record length, address, data, and checksum
 values are processed checking for invalid characters and a valid
 checksum.

 After the .S19 file has been loaded into the internal buffer
 the OS9 module is checked for correct length, and the OS9 Module
 ID, OS9 Initial Header Checksum, and OS9 Initial Module CRC are

 S19OS9 CONVERSION UTILITY PAGE C-8
 THE CONVERSION UTILITY: S19OS9

 verified. After these parameters have been checked then the ac-
 tual header checksum and module CRC values are calculated and
 replace the Initial Module Checksum and CRC values. The final-
 ized module is then written to the file mod.bin.

 APPENDIX D

 RELEASE NOTES

 Asxxxx/ASlink version 5.30 is considered a major release ver-
 sion.

 January 2019 Version 5.3

 (1) Added new assemblers:
 as78k0, as8008, as8008s, as8x300, and asz280

 (2) General assembler updates
 added -i to insert assember lines before input files
 fixed .macro listing options
 fixes related to <q> errors and the -bb option
 fix the escape processing of the '\' character
 .include file location illustrations

 (3) General linker updates
 fix library path file strings
 rewrite of .lst to .rst translation

 (4) Assembler specific fixes
 as740
 changed 2-byte code to 1-byte code definition

 as8048
 Corrected bug in "sel" instruction in .8041 mode.

 asf2mc
 Corrected documentation for asf2mc processor types.

 aspic
 Fixed missing machine type variable definition
 Fixed 'tris' instruction

 RELEASE NOTES Page D-2

 asst8
 Included add/addw/sub/subw sp,#byte modes.
 Added the int opcode. Cleaned up st8addr.c
 addressing mode comments and code.

 January 2017 Version 5.20

 (1) Completed the functionality for propagating
 the boundary specifications .odd, .even, and
 .bndry processed during assembly to the linker.

 (2) Restored the correct functionality of the
 .org directive in areas of REL type.

 (3) Added Intel Hex legacy start address record
 type 1 as an option.

 Summary of changes/additions to the ASxxxx Assemblers from Ver-
 sion 5.11 to Version 4.11.

 2015_06_27 Version 5.10 Update 1

 This update for Version 5.10 of the ASxxxx Cross
 Assemblers includes fixes for the following errors:

 (1) The as6500 assembler incorrectly assembled
 cpx # and cpy # instructions.

 (2) An error in asmain.c inhibited the listing of
 all .if.. assembly directives.

 2014_10_31 Version 5.10

 (1) Rewrite of listing to relocated listing translation
 code in the assembler and the linker base code.
 The Assemblers now create a .lst to .rst hint file
 with the extension .hlr (when both .lst and .rel
 files are created by the assembler).

 (2) Add as6100 assembler (Intersil IM6100 / Harris HM6100)

 (3) Add as78k0s assembler (Renesas/NEC 78K/0S)

 RELEASE NOTES Page D-3

 2013_05_12 Version 5.00 Update 6

 This update for Version 5.00 of the ASxxxx Cross
 Assemblers rolls up updates 1, 2, 3, 4, and 5 with fixes
 for the following:

 (1) Fix asscmp assembler (pre-increment on fetch).

 (2) Fix aslink error reporting for PC relative modes.

 2012_08_01 Version 5.00 Update 5

 Update_05 for the ASxxxx Assembler and Linker Version 5.00
 (use 'pkunzip -d u05500.zip' for extraction with MS-DOS)
 (use 'unzip -L -a u05500.zip' for extraction with Linux)

 See the note about merging
 this update with the
 asxv5pxx distribution.

 This update for Version 5.00 of the ASxxxx Cross
 Assemblers rolls up updates 1, 2, 3, and 4 with the addition of
 a new assembler and fixes:

 (1) A new cross assembler for the Fairchild
 F8 microprocessor (or Mostek 3870).

 (2) Minor syntactical changes for ANSI C compatability,
 fix type conversion warnings, and update the
 various build, make, and test files.

 Update 4 Items

 (1) The AS8048 base opcode value for the JMPP
 instruction should be B3 and NOT 83.

 (2) The AS8051 assembler calculates incorrect
 offsets when using the program counter, ".",
 as a destination in the instructions having
 a PC-Relative addressing mode. These
 instructions include: jbc, jb, jbn, jc,
 jnc, jz, jnz, cjne, and djnz.

 RELEASE NOTES Page D-4

 Update 3 Items

 (1) A new cross assembler for the Fairchild
 F8 microprocessor (or Mostek 3870).

 (2) Minor syntactical changes for ANSI C compatability,
 fix type conversion warnings, and update the
 various build, make, and test files.

 (3) New cross assemblers for STMicroelectronics
 ST6, ST7, and STM8 microprocessors.

 (4) An ASlink list file update error fix (-u option)
 causing some errors not to be inserted into the
 created .rst file.

 (5) An additional ASxxxx assembler option (-v) which
 enables checking for out of range signed / unsigned
 values in symbol equates and arithmetic operations.
 This option has some ambiguities as internally the
 assemblers use unsigned arithmetic for calculations.
 (e.g. for a 2-byte machine -32768 and 32768 are both
 represented as 0x8000)

 Update 2 Items

 (1) When using the assembler directive .end to specify
 the code entry address the assembler fails to set
 the variable .__.END. as a global. Therefor the
 value of .__.END. is not passed to the linker and
 the start address frame is always zero.

 (2) The linker will fail to create a start address frame
 when there is no code generated within the area/bank
 referenced by the .__.END. variable.

 Update 1 Items

 (1) The newest versions of gcc (and perhaps other
 compilers) give warnings about missing arguments
 in the fprintf() function. This update replaces
 fprintf(arg1, arg2) with fprintf(arg1, "%s", arg2)
 in each affected line of code.

 (2) The newest versions of gcc (and perhaps other
 compilers) have defined 'getline' as a standard

 RELEASE NOTES Page D-5

 function in 'stdio.h'. This conflicts with the
 function 'getline()' in the ASxxxx package.
 All references to 'getline()' have been changed
 to 'nxtline()'.

 Before merging the asxv5pxx directory and subdirectories with
 the V5.00 distribution the following files/directories must be
 deleted:

 [asxv5pxx\asf2mc8\f8mch.c
 [asxv5pxx\asf2mc8\f8adr.c
 [asxv5pxx\asf2mc8\f8pst.c
 [asxv5pxx\asf2mc8\f8.h

 [asxv5pxx\asxmak\vc6\asf2mc8]
 [asxv5pxx\asxmak\vs05\asf2mc8]

 2011_07_24 Version 5.00 Update 4

 This update for Version 5.00 of the ASxxxx Cross
 Assemblers includes fixes for the following errors:

 (1) The AS8048 base opcode value for the
 JMPP instruction should be B3 and NOT 83.

 (2) The AS8051 assembler calculates incorrect
 offsets when using the program counter, ".",
 as a destination in the instructions having
 a PC-Relative addressing mode. These
 instructions include: jbc, jb, jbn, jc,
 jnc, jz, jnz, cjne, and djnz.

 2010_10_31 Version 5.00 Update 3

 This update for Version 5.00 of the ASxxxx Cross
 Assemblers rolls up updates 1 and 2 with the addition of
 three new assemblers and fixes:

 (1) New cross assemblers for STMicroelectronics
 ST6, ST7, and STM8 microprocessors.

 (2) An ASlink list file update error fix (-u option)
 causing some errors not to be inserted into the
 created .rst file.

 RELEASE NOTES Page D-6

 (3) An additional ASxxxx assembler option (-v) which
 enables checking for out of range signed / unsigned
 values in symbol equates and arithmetic operations.
 This option has some ambiguities as internally the
 assemblers use unsigned arithmetic for calculations.
 (e.g. for a 2-byte machine -32768 and 32768 are both
 represented as 0x8000)

 Update 2 Items

 (1) When using the assembler directive .end to specify
 the code entry address the assembler fails to set
 the variable .__.END. as a global. Therefor the
 value of .__.END. is not passed to the linker and
 the start address frame is always zero.

 (2) The linker will fail to create a start address frame
 when there is no code generated within the area/bank
 referenced by the .__.END. variable.

 Update 1 Items

 (1) The newest versions of gcc (and perhaps other
 compilers) give warnings about missing arguments
 in the fprintf() function. This update replaces
 fprintf(arg1, arg2) with fprintf(arg1, "%s", arg2)
 in each affected line of code.

 (2) The newest versions of gcc (and perhaps other
 compilers) have defined 'getline' as a standard
 function in 'stdio.h'. This conflicts with the
 function 'getline()' in the ASxxxx package.
 All references to 'getline()' have been changed
 to 'nxtline()'.

 2010_04_01 Version 5.00 Update 2

 This update for Version 5.00 of the ASxxxx Cross
 Assemblers includes fixes for the following errors:

 (1) When using the assembler directive .end to specify
 the code entry address the assembler fails to set
 the variable .__.END. as a global. Therefor the
 value of .__.END. is not passed to the linker and

 RELEASE NOTES Page D-7

 the start address frame is always zero.

 (2) The linker will fail to create a start address frame
 when there is no code generated within the area/bank
 referenced by the .__.END. variable.

 2010_03_03 Version 5.00 Update 1

 This update for Version 5.00 of the ASxxxx Cross
 Assemblers includes fixes for the following errors:

 (1) The newest versions of gcc (and perhaps other
 compilers) give warnings about missing arguments
 in the fprintf() function. This update replaces
 fprintf(arg1, arg2) with fprintf(arg1, "%s", arg2)
 in each affected line of code.

 (2) The newest versions of gcc (and perhaps other
 compilers) have defined 'getline' as a standard
 function in 'stdio.h'. This conflicts with the
 function 'getline()' in the ASxxxx package.
 All references to 'getline()' have been changed
 to 'nxtline()'.

 2009_04_01 (Version 5.00)

 Added a general purpose macro processor to the ASxxxx assem-
 blers.

 Added true (t), false (f), and true or false (tf) condition-
 als to the .if / .else / .endif construct. The conditionals
 .ift, .iff, and .iftf allow replacement of the .else directive
 making the .if / .endif construct more readable.

 e.g. .ift if condition is true

 An alternate .if construction has been added to the ASxxxx
 assemblers:

 e.g. .if eq,... if argument == 0

 RELEASE NOTES Page D-8

 The immediate conditional statements have been added to the
 ASxxxx assemblers. These conditionals can replace the
 .if / ... / .endif construct for a single assembler source line:

 e.g. .iifeq arg label: .word 0x1234

 The alternate immediate conditional statements have also been
 added to the ASxxxx assemblers:

 e.g. .iif eq,arg label: .word 0x1234

 The listing options for the ASxxxx assemblers has been up-
 dated to enable/disable any of the following parameters from be-
 ing output to a generated listing file:

 err error codes
 loc code location
 bin assembler binary code
 eqt symbolic equates / if evaluations
 cyc machine cycles
 lin assembler source line number
 src assembler source code
 pag paging control
 lst listing of .list / .nlist
 md macro definition
 me macro expansion
 meb macro expansion binary code

 ! sets the listing mode to
 !(.list) or !(.nlist) before
 applying the sublist options

 e.g. .nlist (lst,pag) ; disable .list/.nlist listing
 ; and pagination

 The NOT parameter, !, is used to set the listing mode to the
 opposite sense of the .list or .nlist directive. For example:

 .nlist (!) is equivalent to .list and
 .list (!) is equivalent to .nlist

 To enable listing and simultaneously disable the cycle count use
 the directive:

 .nlist (!,cyc)

 RELEASE NOTES Page D-9

 or if you wish to suppress the listing of the .list / .nlist
 directives:

 .nlist ; disables all listing
 .nlist (!,lst) ; enables all listing except
 : .list (...) and .nlist

 Normally the .list and .nlist directives are not evaluated
 when encountered within a FALSE conditional block. This default
 behavior can be modified by specifying a non zero argument in
 the .list or .nlist directive:

 .nlist 1,(!,lst) ; enables listing even within
 ; a FALSE conditional block

 The .bndry assembler directive has been added to ASxxxx. The
 .bndry directive changes the current location address to be
 evenly divisible by a specified integer value.

 e.g. .org 0
 .bndry 4
 ; . == 0

 .org 1
 .bndry 4
 ; . == 4

 2009_02
 Added the Cypress PSoc (M8C) ASM8C assembler
 to ASxxxx.

 2008_09
 Added the 8048 (8021, 8022, and 8041) AS8048
 assembler to Asxxxx.

 2008_02
 Added the SC/MP ASSCMP assembler to ASxxxx.

 RELEASE NOTES Page D-10

 2008_02_03 (Version 4.11 Update 4)

 An update to the AS2650 assembler to
 fix the following errors:

 1) The indexed addressing mode generates invalid
 code by using the first argument register as
 the index register: (addr = 0x1234)

 loda r0,[addr,r1] 0C F2 34
 this should give 0D F2 34

 2) The index addressing mode did not generate
 an addressing error when the first argument
 register was not r0:

 stra r1,[addr,r2] should give an <a>
 error, the source must be r0

 loda r2,[addr,r3] should give an <a>
 error, the destination must be r0

 3) The S2650 auto increment and decrement indexing
 modes always perform the register update before
 the register is used. i.e. +Rn or -Rn. The
 assembler now accepts +Rn or Rn+ as meaning
 pre-increment and -Rn or Rn- as meaning
 pre-decrement.

 The AS2650 assembler tstscn files have been updated
 for testing the assemblers.

 2007_10_21 (Version 4.11 Fix)

 In the AS6816 assembler the instruction ANDP gives
 wrong object code. Changed from 37 2A to 37 3A.

 RELEASE NOTES Page D-11

 2007_04_01 (Version 4.11 Update 3)

 An update to the ASPIC assembler and
 associated fix to ASLINK:

 1) Change the pic addressing to lo/hi from hi/lo
 byte ordering.

 2) The update fixes an error in the pic17 series
 LCALL instruction.

 3) A rewrite of the pic18 series assembler to change
 the PC addressing from 1 per 16-bit word to 1 per
 8-bit byte and add the extended instruction set.

 4) Modify the Linker Merge Mode processing to take into
 account the discarded low order bits for PC Relative
 Addressing.

 5) New tstscn files for testing the assemblers.

 2006_11_01 (Version 4.11 Optional Update 2)

 1) OS9 definition files and an OS9 assembler module
 which creates the OS9 header, code and data areas,
 and the module CRC block:

 os9_mod.def OS9 Module Definitions
 os9_sys.def OS9 Sytem Definitions
 os9_mod.asm OS9 Module Begin / End Code

 2) a program, s19os9, to post-process assembled OS9
 modules in S19 format into binary OS9 modules
 with the appropriate header checksum and module
 CRC values calculated.

 3) new make and project files which may be used to
 compile the s19os9 program.

 RELEASE NOTES Page D-12

 2006_11_01 (Version 4.11 Optional Update 01)

 The .list and .nlist directives are now modified
 by .if / .else / .endif processing so that they are
 active only in a TRUE clause.

 The .page and .include directives are now modified
 by the .list and .nlist directives so that pagination
 occurs only when listing is active.

 The new default functionality for the .list, .nlist
 and .page directives may be modified by including an
 optional argument in the directive as shown here for
 the the .list directive:

 .list arg

 a non-zero argument invokes the directive irrespective
 of the .if / .else / .endif status.

 2006_07_26 (Version 4.11 Patch 01)

 The assembly of a direct page instruction with a
 numeric constant causes a program crash when a .rel
 file is created. e.g.:

 andb *0x02

 The use of a symbolic constant or symbol plus a
 a constant compiles normally.

 val = 0x02

 andb *val
 andb *extern+0x01

 The assemblers effected are:

 as6809
 as6812
 ash8
 aspic

 RELEASE NOTES Page D-13

 Summary of changes/additions to the ASxxxx Assemblers from
 Version 4.10 to Version 4.11.

 1. Incorporated the patches contained in p01410.zip which
 corrected a coding error that affected BANKS containing
 multiple ABS areas or mixed AREA types.

 2. Incorporated the patches contained in p02410.zip which
 corrected improper use of R_USGN in most addressing
 modes in AS6500. This caused unexpected <a> errors in
 V4.xx because of the ASxxxx core change to 32-bit in-
 tegers and arithmetic.

 3. Incorporated the patches contained in p03410.zip which
 corrected errors in the .local and .globl assembler
 directive processing routine that introduced unwanted
 side effects for variable and symbol definition files.
 These effects included improper definitions and incor-
 rect error warnings.

 4. The following new subdirectories and their files have
 been added to the asxtst directory:

 * areabank Area and Bank Processing Test
 This directory contains several test programs:
 ts.asm (single file - multiple areas), tm1.asm and
 tm2.asm (multiple file - multiple areas), and
 tbm.asm, tbm1.asm, and tbm2.asm (multiple file -
 multiple areas within a bank) and several other
 files which verify the correct operation of the
 linker when used with a single linked file, multi-
 ple linked files having no banking, and multiple
 linked files with banking. These reference files
 show in detail how the .area and .bank directives
 work together.

 * equtst Equate Processing Test
 This directory contains a test file for verifying
 the operation of the .globl, .local, .equ, .gblequ,
 and .lclequ directives and the =, ==, and =:
 equalities.

 * inctst Nested Include File Test

 * itst Include File Error Reporting Test

 RELEASE NOTES Page D-14

 5. Incorporated the updates contained in u01410.zip which
 added 10 undocumented 8085 instructions to the AS8085
 assembler.

 Summary of changes/additions to the ASxxxx Assemblers from
 Version 4.00 to Version 4.10.

 1. Added new assemblers for the Zilog EZ80, Zilog Z8, Sig-
 netics 2650, and Fujitsu F2MC8(L,FX) processors.

 2. Added the processor cycle count option (-c) to all pro-
 cessors.

 3. Several of the assemblers (ASZ80, ASRAB, AS6805,
 AS6808, AS6812, ASF2MC8, ...) now support subsets or
 supersets of their basic opcodes by the use of assem-
 bler specific directives.

 4. Added .ifeq, .ifne, .iflt, .ifgt, .ifle, and .ifge con-
 ditional assembly directives.

 5. Added support for the Tandy Color Computer Disc Basic
 binary file format to ASLINK.

 6. Problem:
 When an area size is equal to the 'address space size'
 the size parameter is reported as 0. (A normal condi-
 tion caused by address rollover to 0.) Aslink inter-
 preted this as a 0 size.

 Fix:
 A new area 'Output Code Flag' bit was defined to indi-
 cate when data is defined in an area. ASxxxx and
 Aslink have been updated to set and process this area
 flag bit.

 7. Problem:
 The use of the .end assembler directive in an Asxxxx
 assembler would cause Aslink to output the optional
 start address in all output files.

 Fix:
 Updated Aslink to output the optional start address
 only in the output file associated with the area/bank

 RELEASE NOTES Page D-15

 containing the .end directive.

 8. Problem:
 Aslink creates output files for banks with no output
 data.

 Fix:
 Aslink now deletes any created output file for banks
 with no data.

 9. Incorporated the patches contained in p01400.zip for
 files t1802.asm and 1802pst.c to correct for an error
 in the opcodes generated for the BM, BL, and BNF
 mnemonics.

 10. Incorporated the patches contained in p02400.zip for
 file ds8adr.c to correct for an error in the direct
 page addressing mode of AS8xCxxx.

 11. Incorporated the patches contained in p03400.zip for
 file rabmch.c to correct for an error in the processing
 of the "ret cc" instruction.

 12. Made many corrections to internal code comments.

 APPENDIX E

 CONTRIBUTORS

 Thanks to Marko Makela for his contribution of the AS6500 cross
 assembler.

 Marko Makela
 Sillitie 10 A
 01480 Vantaa
 Finland
 Internet: Marko dot Makela at Helsinki dot Fi
 EARN/BitNet: msmakela at finuh

 Thanks to John Hartman for his contribution of the AS8051 cross
 assembler and updates to the ASxxxx and ASLINK internals.

 John L. Hartman
 jhartman at compuserve dot com
 noice at noicedebugger dot com

 Thanks to G. Osborn for his contributions to LKS19.C and
 LKIHX.C.

 G. Osborn
 gary at s-4 dot com

 CONTRIBUTORS Page E-2

 Thanks to Ken Hornstein for his contribution of object libraries
 contained in LKLIBR.C.

 Ken Hornstein
 kenh at cmf dot nrl dot navy dot mil

 Thanks to Bill McKinnon for his contributions to the AS8XCXXX
 cross assembler for the DS8XCXXX series of microprocessors.

 Bill McKinnon
 w_mckinnon at conknet dot com

 Thanks to Roger Ivie for his contribution of the ASGB cross as-
 sembler for the GameBoy.

 Roger Ivie
 ivie at cc dot usu dot edu

 Thanks to Uwe Steller for his contribution of the AS740 cross
 assembler.

 Uwe Stellar
 Uwe dot Steller at t-online dot de

 Thanks to Shujen Chen for his contribution of the AS1802 cross
 assembler.

 Shugen Chen
 DeVry University
 1221 N. Swift Road
 schen at devry dot edu

 CONTRIBUTORS Page E-3

 Thanks to Edgar Puehringer for his contribution of the AS61860
 cross assembler.

 Edgar Puehringer
 edgar_pue at yahoo dot com

 Thanks to Ulrich Raich and Razaq Ijoduola for their contribution
 of the ASRAB cross assembler.

 Ulrich Raich and Razaq Ijoduola
 PS Division
 CERN
 CH-1211 Geneva-23

 Ulrich dot Raich at cern dot ch

 Thanks to Patrick Head for his contribution of the ASEZ80 cross
 assembler.

 Patrick Head
 patrick at phead dot net

 Thanks to Boisy G. Pitre for contributing the .ifeq, .ifne,
 .ifgt, .iflt, .ifle, and .ifge conditional directives and the
 Tandy Color Computer Disk Basic binary output for ASLINK.

 Boisy G. Pitre
 boisy at boisypitre dot com

 CONTRIBUTORS Page E-4

 Thanks to Mike McCarty for his contributions to the processor
 cycle count option of the ASxxxx Assemblers.

 Mike McCarty
 mike dot mccarty at sbcglobal dot net

 Thanks to Mengjin Su for his contribution of the PIC18Fxxx Ex-
 tended Instructions.

 Mengjin Su
 msu at micron dot com

 Thanks to Carl Rash for his contribution of the Visual Studio
 2010 project files.

 Carl Rash
 crash at triad dot rr dot com

 Thanks to John Coffman for creating the Z280 assembler.

 John Coffman
 johninsd at gmail dot com

 Thanks to Mike Naberezny for suggesting the addition of the
 as78k0 assembler.
 Mike Naberezny
 mike at naberezny dot com

 And thanks to all those who took the time to send bug
 reports, suggest changes, or simply sent a note of encourage-
 ment. These were and are greatly appreciated. Thank you.

 APPENDIX AA

 ASCHECK ASSEMBLER

 The ASxxxx assembler ASCHECK is used to test the machine in-
 dependent features of the ASxxxx assemblers. The source files
 for the ASCHECK assembler are also useful as a template for the
 development of a new ASxxxx assembler.

 The ASCHECK assembler has all the ASxxxx directives enabled
 for testing all features of the assemblers.

 ASCHECK ASSEMBLER Page AA-2

 AA.1 .opcode DIRECTIVE

 Format:

 .opcode n

 The .opcode directive creates a single byte of code having the
 value n and having cycle counts defined in the following table:

 /*--*--* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
 /*--*--* - - - - - - - - - - - - - - - - */
 /*00*/ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,
 /*10*/ UN, 1,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
 /*20*/ UN,UN, 2,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
 /*30*/ UN,UN,UN, 3,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
 /*40*/ UN,UN,UN,UN, 4,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
 /*50*/ UN,UN,UN,UN,UN, 5,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
 /*60*/ UN,UN,UN,UN,UN,UN, 6,UN,UN,UN,UN,UN,UN,UN,UN,UN,
 /*70*/ UN,UN,UN,UN,UN,UN,UN, 7,UN,UN,UN,UN,UN,UN,UN,UN,
 /*80*/ UN,UN,UN,UN,UN,UN,UN,UN, 8,UN,UN,UN,UN,UN,UN,UN,
 /*90*/ UN,UN,UN,UN,UN,UN,UN,UN,UN, 9,UN,UN,UN,UN,UN,UN,
 /*A0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,10,UN,UN,UN,UN,UN,
 /*B0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,11,UN,UN,UN,UN,
 /*C0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,12,UN,UN,UN,
 /*D0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,13,UN,UN,
 /*E0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,14,UN,
 /*F0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,15

 The UN symbols indicate 'undefined cycles' where no cycle count
 will be output.

 APPENDIX AB

 AS1802 ASSEMBLER

 AB.1 ACKNOWLEDGMENT

 Thanks to Shujen Chen for his contribution of the AS1802
 cross assembler.

 Shujen Chen
 DeVry University
 Tinley Park, IL
 schen at tp dot devry dot edu

 AB.2 1802 REGISTER SET

 The following is a list of the 1802 registers used by AS1802:

 r0-r15 - 8-bit registers
 sp - register r2
 pc - register r3
 call - register r4
 return - register r5
 argr - register r6

 AS1802 ASSEMBLER PAGE AB-2
 1802 INSTRUCTION SET

 AB.3 1802 INSTRUCTION SET

 The following tables list all 1802 mnemonics recognized by
 the AS1802 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by AS1802:

 #data immediate data
 byte or word data

 expr expression

 Rn register addressing

 label branch label

 The terms data, expr, and label may be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 1802 technical data for valid modes.

 AB.3.1 1802 Inherent Instructions

 adc add and
 dis idl irx
 ldx ldxa lsdf
 lsie lskp lsnf
 lsnq lsnz lsq
 lsz mark nop
 or req ret
 rshl rshr sav
 sd sdb seq
 shl shlc shr
 shrc skp sm
 smb stxd xor

 AS1802 ASSEMBLER PAGE AB-3
 1802 INSTRUCTION SET

 AB.3.2 1802 Short Branch Instructions

 b1 label b2 label
 b3 label b4 label
 bdf label bge label
 bl label bm label
 bn1 label bn2 label
 bn3 label bn4 label
 bnf label bnq label
 bnz label bpz label
 bq label br label
 bz label nbr label

 AB.3.3 1802 Long Branch Instructions

 lbdf label lbnf label
 lbnq label lbnz label
 lbq label lbr label
 lbz label nlbr label

 AB.3.4 1802 Immediate Instructions

 adci #data adi #data
 ani #data ldi #data
 ori #data sdbi #data
 sdi #data smbi #data
 smi #data xri #data

 AB.3.5 1802 Register Instructions

 dec Rn ghi Rn
 glo Rn inc Rn
 lda Rn ldn Rn
 phi Rn plo Rn
 sep Rn sex Rn
 str Rn

 AS1802 ASSEMBLER PAGE AB-4
 1802 INSTRUCTION SET

 AB.3.6 1802 Input and Output Instructions

 inp expr
 out expr

 AS1802 ASSEMBLER PAGE AB-5
 1802 INSTRUCTION SET

 AB.3.7 CDP1802 COSMAC Microprocessor Instruction Set Summary

 --
 | |
 | |
 | RCA |
 | |
 | 1 88888 000 22222 |
 | 11 8 8 0 0 2 2 |
 | 1 8 8 0 0 0 2 |
 | 1 88888 0 0 0 222 |
 | 1 8 8 0 0 0 2 |
 | 1 8 8 0 0 2 |
 | 111 88888 000 2222222 |
 | |
 | CDP1802 COSMAC Microprocessor Instruction Set Summary |
 | |
 | |
 | |
 | |
 |Written by Jonathan Bowen |
 | Programming Research Group |
 | Oxford University Computing Laboratory |
 | 8-11 Keble Road |
 | Oxford OX1 3QD |
 | England |
 | |
 | Tel +44-865-273840 |
 | |
 |Created August 1981 |
 |Updated April 1985 |
 |Issue 1.3 Copyright (C) J.P.Bowen 1985|
 --

 AS1802 ASSEMBLER PAGE AB-6
 1802 INSTRUCTION SET

 --
 | |
 | CDP1802 COSMAC Microprocessor Pinout |
 | |
 | _________ _________ |
 | _| __/ |_ | | |
 | --> CLOCK |_|1 40|_| Vdd |
 | ____ _| |_ ____ |
 | --> WAIT |_|2 39|_| XTAL --> |
 | _____ _| |_ ______ |
 | --> CLEAR |_|3 38|_| DMA IN <-- |
 | _| |_ _______ |
 | <-- Q |_|4 37|_| DMA OUT <-- |
 | _| |_ _________ |
 | <-- SC1 |_|5 36|_| INTERRUPT <-- |
 | _| |_ ___ |
 | <-- SC0 |_|6 35|_| MWR <-- |
 | ___ _| |_ |
 | <-- MRD |_|7 34|_| TPA --> |
 | _| |_ |
 | <--> BUS 7 |_|8 33|_| TPB --> |
 | _| |_ |
 | <--> BUS 6 |_|9 32|_| MA7 --> |
 | _| |_ |
 | <--> BUS 5 |_|10 1802 31|_| MA6 --> |
 | _| |_ |
 | <--> BUS 4 |_|11 30|_| MA5 --> |
 | _| |_ |
 | <--> BUS 3 |_|12 29|_| MA4 --> |
 | _| |_ |
 | <--> BUS 2 |_|13 28|_| MA3 --> |
 | _| |_ |
 | <--> BUS 1 |_|14 27|_| MA2 --> |
 | _| |_ |
 | <--> BUS 0 |_|15 26|_| MA1 --> |
 | _| |_ |
 | Vcc |_|16 25|_| MA0 --> |
 | _| |_ ___ |
 | <-- N2 |_|17 24|_| EF1 <-- |
 | _| |_ ___ |
 | <-- N1 |_|18 23|_| EF2 <-- |
 | _| |_ ___ |
 | <-- N0 |_|19 22|_| EF3 <-- |
 | _| |_ ___ |
 | Vss |_|20 21|_| EF4 <-- |
 | |______________________| |
 | |
 | |
 --

 AS1802 ASSEMBLER PAGE AB-7
 1802 INSTRUCTION SET

 --
 |Mnem. |Op|F|Description |Notes |
 |------+--+-+----------------------------+---------------------|
 |ADC |74|*|Add with Carry |{DF,D}=mx+D+DF |
 |ADCI i|7C|*|Add with Carry Immediate |{DF,D}=mp+D+DF,p=p+1 |
 |ADD |F4|*|Add |{DF,D}=mx+D |
 |ADI i|FC|*|Add Immediate |{DF,D}=mp+D,p=p+1 |
 |AND |F2|*|Logical AND |D={mx}&D |
 |ANI i|FA|*|Logical AND Immediate |D={mp}&D,p=p+1 |
 |B1 a|34|-|Branch if EF1 |If EF1=1 BR else NBR |
 |B2 a|35|-|Branch if EF2 |If EF2=1 BR else NBR |
 |B3 a|36|-|Branch if EF3 |If EF3=1 BR else NBR |
 |B4 a|37|-|Branch if EF4 |If EF4=1 BR else NBR |
 |BDF a|33|-|Branch if DF |If DF=1 BR else NBR |
 |BGE a|33|-|Branch if Greater or Equal |See BDF |
 |BL a|38|-|Branch if Less |See BNF BR else NBR |
 |BM a|38|-|Branch if Minus |See BNF |
 |BN1 a|3C|-|Branch if Not EF1 |If EF1=0 BR else NBR |
 |BN2 a|3D|-|Branch if Not EF2 |If EF2=0 BR else NBR |
 |BN3 a|3E|-|Branch if Not EF3 |If EF3=0 BR else NBR |
 |BN4 a|3F|-|Branch if Not EF4 |If EF4=0 BR else NBR |
 |BNF a|38|-|Branch if Not DF |If DF=0 BR else NBR |
 |BNQ a|39|-|Branch if Not Q |If Q=0 BR else NBR |
 |BNZ a|3A|-|Branch if D Not Zero |If D=1 BR else NBR |
 |BPZ a|33|-|Branch if Positive or Zero |See BDF |
 |BQ a|31|-|Branch if Q |If Q=1 BR else NBR |
 |BR a|30|-|Branch |pl=mp |
 |BZ a|32|-|Branch if D Zero |If D=0 BR else NBR |
 |DEC r|2N|-|Decrement register N |n=n-1 |
 |DIS |71|-|Disable |{X,P}=mx,x=x+1,IE=0 |
 |GHI r|9N|-|Get High register N |D=nh |
 |GLO r|8N|-|Get Low register N |D=nl |
 |IDL |00|-|Idle (wait for DMA or int.) |Bus=m0 |
 |INC r|1N|-|Increment register N |n=n+1 |
 |INP d|6N|-|Input (N=d+8=9-F) |mx=Bus,D=Bus,Nlines=d|
 |IRX |60|-|Increment register X |x=x+1 |
 |LBDF a|C3|-|Long Branch if DF |If DF=1 LBR else LNBR|
 |LBNF a|C8|-|Long Branch if Not DF |If DF=0 LBR else LNBR|
 |LBNQ a|C9|-|Long Branch if Not Q |If Q=0 LBR else LNBR |
 |LBNZ a|CA|-|Long Branch if D Not Zero |If D=1 LBR else LNBR |
 --

 AS1802 ASSEMBLER PAGE AB-8
 1802 INSTRUCTION SET

 --
 |Mnem. |Op|F|Description |Notes |
 |------+--+-+----------------------------+---------------------|
 |LBQ a|C1|-|Long Branch if Q |If Q=1 LBR else LNBR |
 |LBR a|C0|-|Long Branch |p=mp |
 |LBZ a|C2|-|Long Branch if D Zero |If D=0 LBR else LNBR |
 |LDA r|4N|-|Load advance |D=mn,n=n+1 |
 |LDI i|F8|-|Load Immediate |D=mp,p=p+1 |
 |LDN r|0N|-|Load via N (except N=0) |D=mn |
 |LDX |F0|-|Load via X |D=mx |
 |LDXA |72|-|Load via X and Advance |D=mx,x=x+1 |
 |LSDF |CF|-|Long Skip if DF |If DF=1 LSKP else NOP|
 |LSIE |CC|-|Long Skip if IE |If IE=1 LSKP else NOP|
 |LSKP |C8|-|Long Skip |See NLBR |
 |LSNF |C7|-|Long Skip if Not DF |If DF=0 LSKP else NOP|
 |LSNQ |C5|-|Long Skip if Not Q |If Q=0 LSKP else NOP |
 |LSNZ |C6|-|Long Skip if D Not Zero |If D=1 LSKP else NOP |
 |LSQ |CD|-|Long Skip if Q |If Q=1 LSKP else NOP |
 |LSZ |CE|-|Long Skip if D Zero |If D=0 LSKP else NOP |
 |MARK |79|-|Push X,P to stack (T={X,P})|m2={X,P},X=P,r2=r2-1 |
 |NBR |38|-|No short Branch (see SKP) |p=p+1 |
 |NLBR a|C8|-|No Long Branch (see LSKP) |p=p+2 |
 |NOP |C4|-|No Operation |Continue |
 |OR |F1|*|Logical OR |D={mx}vD |
 |ORI i|F9|*|Logical OR Immediate |D={mp}vD,p=p+1 |
 |OUT d|6N|-|Output (N=d=1-7) |Bus=mx,x=x+1,Nlines=d|
 |PLO r|AN|-|Put Low register N |nl=D |
 |PHI r|BN|-|Put High register N |nh=D |
 |REQ |7A|-|Reset Q |Q=0 |
 |RET |70|-|Return |{X,P}=mx,x=x+1,IE=1 |
 |RSHL |7E|*|Ring Shift Left |See SHLC |
 |RSHR |76|*|Ring Shift Right |See SHRC |
 --

 AS1802 ASSEMBLER PAGE AB-9
 1802 INSTRUCTION SET

 --
 |Mnem. |Op|F|Description |Notes |
 |------+--+-+----------------------------+---------------------|
 |SAV |78|-|Save |mx=T |
 |SDB |75|*|Subtract D with Borrow |{DF,D}=mx-D-DF |
 |SDBI i|7D|*|Subtract D with Borrow Imm. |{DF,D}=mp-D-DF,p=p+1 |
 |SD |F5|*|Subtract D |{DF,D}=mx-D |
 |SDI i|FD|*|Subtract D Immediate |{DF,D}=mp-D,p=p+1 |
 |SEP r|DN|-|Set P |P=N |
 |SEQ |7B|-|Set Q |Q=1 |
 |SEX r|EN|-|Set X |X=N |
 |SHL |FE|*|Shift Left |{DF,D}={DF,D,0}<- |
 |SHLC |7E|*|Shift Left with Carry |{DF,D}={DF,D}<- |
 |SHR |F6|*|Shift Right |{D,DF}=->{0,D,DF} |
 |SHRC |76|*|Shift Right with Carry |{D,DF}=->{D,DF} |
 |SKP |38|-|Short Skip |See NBR |
 |SMB |77|*|Subtract Memory with Borrow |{DF,D}=D-mx-{~DF} |
 |SMBI i|7F|*|Subtract Mem with Borrow Imm|{DF,D}=D-mp-~DF,p=p+1|
 |SM |F7|*|Subtract Memory |{DF,D}=D-mx |
 |SMI i|FF|*|Subtract Memory Immediate |{DF,D}=D-mp,p=p+1 |
 |STR r|5N|-|Store via N |mn=D |
 |STXD |73|-|Store via X and Decrement |mx=D,x=x-1 |
 |XOR |F3|*|Logical Exclusive OR |D={mx}.D |
 |XRI i|FB|*|Logical Exclusive OR Imm. |D={mp}.D,p=p+1 |
 | | |-|Interrupt action |T={X,P},P=1,X=2,IE=0 |
 |------+--+-+--|
 | |??| |8-bit hexadecimal opcode |
 | |?N| |Opcode with register/device in low 4/3 bits |
 | | |-|DF flag unaffected |
 | | |*|DF flag affected |
 --

 AS1802 ASSEMBLER PAGE AB-10
 1802 INSTRUCTION SET

 --
 |Arguments | Notes |
 |-----------+--|
 | mn |Register addressing |
 | mx |Register-indirect addressing |
 | mp |Immediate addressing |
 | R() |Stack addressing (implied addressing) |
 |-----------+--|
 | D |Data register (accumulator, 8-bit) |
 | DF |Data Flag (ALU carry, 1-bit) |
 | I |High-order instruction digit (4-bit) |
 | IE |Interrupt Enable (1-bit) |
 | N |Low-order instruction digit (4-bit) |
 | P |Designates Program Counter register (4-bit) |
 | Q |Output flip-flop (1-bit) |
 | R |1 of 16 scratchpad Registers(16-bit) |
 | T |Holds old {X,P} after interrupt (X high, 8-bit) |
 | X |Designates Data Pointer register (4-bit) |
 |-----------+--|
 | mn |Memory byte addressed by R(N) |
 | mp |Memory byte addressed by R(P) |
 | mx |Memory byte addressed by R(X) |
 | m? |Memory byte addressed by R(?) |
 | n |Short form for R(N) |
 | nh |High-order byte of R(N) |
 | nl |Low-order byte of R(N) |
 | p |Short form for R(P) |
 | pl |Low-order byte of R(P) |
 | r? |Short form for R(?) |
 | x |Short form for R(X) |
 |-----------+--|
 | R(N) |Register specified by N |
 | R(P) |Current program counter |
 | R(X) |Current data pointer |
 | R(?) |Specific register |
 --

 AS1802 ASSEMBLER PAGE AB-11
 1802 INSTRUCTION SET

 --
 |Arguments | Notes |
 |-----------+--|
 | a |Address expression |
 | d |Device number (1-7) |
 | i |Immediate expression |
 | n |Expression |
 | r |Register (hex digit or an R followed by hex digit)|
 |-----------+--|
 | + |Arithmetic addition |
 | - |Arithmetic subtraction |
 | * |Arithmetic multiplication |
 | / |Arithmetic division |
 | & |Logical AND |
 | ~ |Logical NOT |
 | v |Logical inclusive OR |
 | . |Logical exclusive OR |
 | <- |Rotate left |
 | -> |Rotate right |
 | { } |Combination of operands |
 | ? |Hexadecimal digit (0-F) |
 | --> |Input pin |
 | <-- |Output pin |
 | <--> |Input/output pin |
 --

 APPENDIX AC

 AS2650 ASSEMBLER

 AC.1 2650 REGISTER SET

 The following is a list of the 2650 registers used by AS2650:

 r0,r1 - 8-bit accumulators
 r2,r3

 AC.2 2650 INSTRUCTION SET

 The following tables list all 2650 mnemonics recognized by
 the AS2650 assembler. The designation [] refers to a required
 addressing mode argument. The designation CC refers to a re-
 quired condition code argument: .eq., .gt., .lt., .un., or
 value of 0-3. The following list specifies the format for each
 addressing mode supported by AS2650:

 #data immediate byte data

 r0,r1,r2,r3 registers

 addr location/branch address

 [addr] or indirect addressing
 @addr

 [addr,r0] or register indexed
 @addr,r0 indirect addressing

 [addr,-r0] or autodecrement register indexed
 @addr,-r0 indirect addressing

 AS2650 ASSEMBLER PAGE AC-2
 2650 INSTRUCTION SET

 [addr,r0+] or autoincrement register indexed
 @addr,r0+ indirect addressing

 .eq. CC: equal (== 0)
 .gt. CC: greater than (== 1)
 .lt. CC: less than (== 2)
 .un. CC: unconditional (== 3)

 The terms data, label, and addr may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 2650 technical data for valid modes.

 AC.2.1 Load / Store Instructions

 lodz r lodi #data
 lodr [] loda []

 stoz r
 stor [] stoa []

 AC.2.2 Arithmetic / Compare Instructions

 addz r addi #data
 addr [] adda []

 subz r subi #data
 subr [] suba []

 comz r comi #data
 comr [] coma []

 dar r

 AC.2.3 Logical / Rotate Instructions

 andz r andi #data
 andr [] anda []

 iorz r iori #data
 iorr [] iora []

 eorz r eori #data
 eorr [] eora []

 rrr r

 AS2650 ASSEMBLER PAGE AC-3
 2650 INSTRUCTION SET

 rrl r

 AC.2.4 Condition Code Branches

 bctr CC,[] bcta CC,[]

 bcfr CC,[] bcfa CC,[]

 bstr CC,[] bsta CC,[]

 bsfr CC,[] bsta CC,[]

 AC.2.5 Register Test Branches

 brnr r,[] brna r,[]

 birr r,[] bira r,[]

 bdrr r,[] bdra r,[]

 bsnr r,[] bsna r,[]

 AC.2.6 Branches (to Subroutines) / Returns

 bxa [] bsxa []

 zbrr [] zbsr []

 retc CC rete CC

 AC.2.7 Input / Output

 redc r wrtc r
 redd r wrtd r
 rede r,addr wrte r,addr

 AS2650 ASSEMBLER PAGE AC-4
 2650 INSTRUCTION SET

 AC.2.8 Miscellaneos

 halt nop
 tmi r,#data

 AC.2.9 Program Status

 lpsl lpsu
 spsl spsu
 cpsl #data cpsu #data
 ppsl #data ppsu #data
 tpsl #data tpsu #data

 APPENDIX AD

 AS430 ASSEMBLER

 AD.1 MPS430 REGISTER SET

 The following is a list of the MPS430 registers used by AS430:

 Sixteen 16-bit registers provide adddress, data, and
 special functions:
 pc / r0 - program counter
 sp / r1 - stack pointer
 sr / r2 - status register
 cg1 / r2 - constant generator 1
 cg2 / r3 - constant generator 2
 r4 - working register r4
 r5 - working register r5
 ...
 r14 - working register r14
 r15 - working register r15

 AS430 ASSEMBLER PAGE AD-2
 MPS430 REGISTER SET

 AD.2 MPS430 ADDRESSING MODES

 The following list specifies the format for each addressing
 mode supported by AS430:

 Source/Destination Operand Addressing Modes

 As/Ad Addressing Mode Syntax Description
 ----- --------------- ------ -----------
 00/0 Register mode Rn Register contents are operand.

 01/1 Indexed mode X(Rn) (Rn + X) points to the operand,
 X is stored in the next word.

 01/1 Symbolic mode ADDR (PC + X) points to the operand,
 X is stored in the next word,
 Indexed mode X(PC) is used.

 01/1 Absolute mode &ADDR The word following the
 instruction, contains the
 absolute address.

 10/- Indirect @Rn Rn is used as a pointer to the
 register mode operand.

 11/- Indirect @Rn+ Rn is used as a pointer to the
 autoincrement operand. Rn is incremented
 afterwards.

 11/- Immediate mode #N The word following the
 instruction contains the
 immediate constant N. Indirect
 autoincrement mode @PC+ is used.

 The terms ADDR, X and N may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the MPS430 technical data for valid modes.

 AS430 ASSEMBLER PAGE AD-3
 MPS430 ADDRESSING MODES

 AD.2.1 MPS430 Instruction Mnemonics

 The following table lists all MPS430 family mnemonics recognized
 by the AS430 assembler. The designations src and dst refer to
 required source and/or destination addressing mode arguments.

 * ADC[.W];ADC.B dst dst + C -> dst
 ADD[.W];ADD.B src,dst src + dst -> dst
 ADDC[.W];ADDC.B src,dst src + dst + C -> dst
 AND[.W];AND.B src,dst src .and. dst -> dst

 BIC[.W];BIC.B src,dst .not.src .and. dst -> dst
 BIS[.W];BIS.B src,dst src .or. dst -> dst
 BIT[.W];BIT.B src,dst src .and. dst
 * BR dst Branch to
 * BRANCH dst Branch to

 CALL dst PC+2 -> stack, dst -> PC
 * CLR[.W];CLR.B dst Clear destination
 * CLRC Clear carry bit
 * CLRN Clear negative bit
 * CLRZ Clear zero bit
 CMP[.W];CMP.B src,dst dst - src

 * DADC[.W];DADC.B dst dst + C -> dst (decimal)
 DADD[.W];DADD.B src,dst src + dst + C -> dst (decimal)
 * DEC[.W];DEC.B dst dst - 1 -> dst
 * DECD[.W];DECD.B dst dst - 2 -> dst

 * DINT Disable interrupt
 * EINT Enable interrupt

 * INC[.W];INC.B dst dst + 1 -> dst
 * INCD[.W];INCD.B dst dst + 2 -> dst
 * INV[.W];INV.B dst Invert destination

 JC/JHS Label Jump to Label if Carry-bit is set
 JEQ/JZ Label Jump to Label if Zero-bit is set
 JGE Label Jump to Label if (N .XOR. V) = 0
 JL Label Jump to Label if (N .XOR. V) = 1
 JMP Label Jump to Label unconditionally
 JN Label Jump to Label if Negative-bit is set
 JNC/JLO Label Jump to Label if Carry-bit is reset
 JNE/JNZ Label Jump to Label if Zero-bit is reset

 MOV[.W];MOV.B src,dst src -> dst

 * NOP No operation

 AS430 ASSEMBLER PAGE AD-4
 MPS430 ADDRESSING MODES

 * POP[.W];POP.B dst Item from stack, SP+2 -> SP
 PUSH[.W];PUSH.B src SP - 2 -> SP, src -> @SP

 RETI Return from interrupt
 TOS -> SR, SP + 2 -> SP
 TOS -> PC, SP + 2 -> SZP
 * RET Return from subroutine
 TOS -> PC, SP + 2 -> SP
 * RLA[.W];RLA.B dst Rotate left arithmetically
 * RLC[.W];RLC.B dst Rotate left through carry
 RRA[.W];RRA.B dst MSB -> MSBLSB -> C
 RRC[.W];RRC.B dst C -> MSBLSB -> C

 * SBC[.W];SBC.B dst Subtract carry from destination
 * SETC Set carry bit
 * SETN Set negative bit
 * SETZ Set zero bit
 SUB[.W];SUB.B src,dst dst + .not.src + 1 -> dst
 SUBC[.W];SUBC.B src,dst dst + .not.src + C -> dst
 SBB[.W];SBB.B src,dst dst + .not.src + C -> dst
 SWPB dst swap bytes
 SXT dst Bit7 -> Bit8 Bit15

 * TST[.W];TST.B dst Test destination

 XOR[.W];XOR.B src,dst src .xor. dst -> dst

 Note: Asterisked Instructions
 Asterisked (*) instructions are emulated.
 They are replaced with coreinstructions
 by the assembler.

 APPENDIX AE

 AS6100 ASSEMBLER

 AE.1 6100 MACHINE DESCRIPTION

 The IM6100 (Intersil) and HM6100 (Harris) microprocessors are
 12-bit word addressable machines having three 12-bit program ac-
 cessible registers and one single bit register. These are the
 Accumulator (AC), MQ Register (MQ), Program Counter (PC), and
 the Link (L) respectively.

 The 6100 is basically a clone of the Digital Equipment Cor-
 poration PDP-8E minicomputer architecture. This architecture
 predates all microprocessors and labeled the bits from 0 (the
 most significant) to 11 (the least significant) rather than from
 least to most significant. The actual labelling is arbitrary
 and the as6100 assembler uses the now more common labelling.

 The output generated from the assembler/linker is two bytes
 per word ordered as MSB then LSB with the upper 4 bits of the
 MSB always zero.

 AE.2 ASSEMBLER SPECIFIC DIRECTIVES

 Because the 6100 microprocessor has no concept of bytes
 several of the cross assembler directives have their operation
 changed to reflect the 12-Bit nature of the microprocessor.

 These are:
 .byte (.db and .fcb are aliases)
 output an 8-Bit value
 into a 12-bit word
 .word (.dw and .fdb are aliases)

 AS6100 ASSEMBLER PAGE AE-2
 ASSEMBLER SPECIFIC DIRECTIVES

 output a 12-Bit value
 into a 12-Bit word
 .ascii (.asciz and ascis also)
 output a sequence of 8-Bit
 characters in 12-bit words

 A double precision integer (24-Bits) mnemonic has been added:

 .dubl (.4byte and .quad are aliases)
 output a 24-Bit value
 into two 12-bit words

 Two new directives have been added to implement 6-bit
 character string operations. The characters A-Z and [/]^_ are
 masked to values of 0x01 to 0x1F, the characters a-z are masked
 to values of 0x01 to 0x1A, and the characters from ' ' (space)
 to '?' are masked to 0x20 to 0x3F. All other ascii characters
 become a space (0x20).

 These are:
 .text output upto two characters per 12-bit
 word
 .textz output upto two characters per 12-bit
 word
 followed by a 6-bit zero value.

 AE.3 MACHINE SPECIFIC DIRECTIVES

 The 6100 microprocessor memory architecture consists of 32
 pages each having 128 words for a total of 4096 addressable
 words. The 6100 instruction set allows direct access only to
 the current page and to page 0. Three machine specific direc-
 tives provide differing methods to select the memory page.
 These directives are:

 AS6100 ASSEMBLER PAGE AE-3
 MACHINE SPECIFIC DIRECTIVES

 AE.3.1 .setpg

 Format:

 .setpg ; . = next page boundary
 .setpg N ; . = Nth page boundary

 where: N is the page number from 0 to 31

 The .setpg directive is used to set the current program loca-
 tion counter to a specific 128 word page boundary or to the next
 128 word page boundary and inform the assembler/linker of this
 boundary.

 AE.3.2 .mempn

 Format:

 .mempn N ; . = Nth page boundary

 where: N is the page number from 0 to 31

 The .mempn directive is used to set the current program loca-
 tion counter to a specific 128 word page boundary and inform the
 assembler/linker of this boundary.

 AE.3.3 .mempa

 Format:

 .mempa A ; . = A (a page boundary)

 where: A is a 128 word page address boundary

 The .mempa directive is used to set the current program loca-
 tion counter to a specific page boundary address and inform the
 assembler/linker of this boundary.

 AS6100 ASSEMBLER PAGE AE-4
 6100 INSTRUCTION SET

 AE.4 6100 INSTRUCTION SET

 The following tables list all 6100 family mnemonics recog-
 nized by the AS6100 assembler. The instruction set is described
 in 3 major groupings: Basic Instructions, Operate Microinstruc-
 tions, and IOT Instructions.

 AE.4.1 Basic Instructions

 The basic instructions are:

 and Logical AND
 tad Binary ADD
 isz Increment and skip if zero
 dca Deposit and clear AC
 jms Jump to subroutine
 jmp Jump

 These instructions have two paging addressing modes:

 addr current page address
 *addr page 0 address

 which can be combined with an indirect mode signified by an i
 argument or enclosing brackets []:

 i addr indirect current page
 [addr]

 i *addr indirect page 0
 [*addr] or *[addr]

 The 6100 implements an auto-increment mode when accessing ad-
 dresses 0x08 - 0x0F in page 0 by incrementing the contents of
 the location before using the value as an address.

 AS6100 ASSEMBLER PAGE AE-5
 6100 INSTRUCTION SET

 AE.4.2 Operate Instructions

 The operate instructions are split into three groups of mu-
 tually exclusive micro operations. The single micro operation
 in common with all three groups is:

 CLA Clear Accumulator

 AE.4.2.1 Group 1 Operate Instructions -

 The group 1 microinstructions are used primarily to perform
 logical operations on the contents of the accumulator and link:

 CLL Clear Link
 CMA Complement Accumulator
 CML Complement Link
 IAC Increment Accumulator

 RAL Rotate Accumulator Left
 RTL Rotate Two Left
 RAR Rotate Accumulator Right
 RTR Rotate Two Right
 BSW Byte Swap

 A group 1 microinstruction can contain one or all of the mnemon-
 ics CLA, CLL, CMA, CML, IAC, but only one of the RAL, RTL, RAR,
 RTR, or BSW mnemonics (RAL, RTL, RAR, RTR, and BSW are mutually
 exclusive).

 The NOP (No Operation) functionality can be implemented in
 all three operate instruction groups but is specified by the as-
 sembler as a group 1 instruction.

 Several common group 1 operations have been given their own
 mnemonics:

 NOP NO Operation
 CIA Complement and Increment Accumulator
 GLT Get Link
 STA Set Accumulator

 AS6100 ASSEMBLER PAGE AE-6
 6100 INSTRUCTION SET

 AE.4.2.2 Group 2 Operate Instructions -

 The group 2 microinstructions are used primarily to test the
 contents of the accumulator and/or link and then conditionally
 skip the next sequential instruction:

 HLT Halt
 OSR Or With Switch Register

 SKP Skip
 SNL Skip On Non-Zero Link
 SZL Skip On Zero Link
 SZA Skip On Zero Accumulator
 SNA Skip On Non-Zero Accumulator
 SMA Skip On Minus Accumulator
 SPA Skip On Plus Accumulator

 A group 2 microinstruction can contain one or all of the mnemon-
 ics CLA, HLT, OSR, but only one of the SKP, SNL, SZL, SZA, SNA,
 SMA, or SPA mnemonics (SKP, SNL, SZL, SZA, SNA, SMA, and SPA are
 mutually exclusive).

 One common group 2 operation has been given its own mnemonic:

 LAS Load Accumulator With Switch Register

 AE.4.2.3 Group 3 Operate Instructions -

 The group 3 microinstructions perform logical operations on
 the contents of AC and MQ.

 MQL MQ Register Load
 MQA MQ Register Into Accumulator

 A group 3 microinstruction can contain one or all of the mnemon-
 ics CLA, MQL, and MQA.

 Several common group 3 operations have been given their own
 mnemonics:

 SWP Swap Accumulator and MQ Register
 CAM Clear Accumulator and MQ Register
 ACL Clear Accumulator and Load
 MQ Register into Accumulator

 AS6100 ASSEMBLER PAGE AE-7
 6100 INSTRUCTION SET

 AE.4.2.4 Group Errors -

 The 6100 assembler has three additional error codes which oc-
 cur when the group 1, 2, or 3 operations are mixed. The error
 code will be <1>, <2>, or <3> based upon the first group type
 encountered followed by any other type of group operation. The
 CLA operation is valid with all groups and does not cause an er-
 ror code to be generated.

 AE.4.3 Input/Output (IOT) Instructions

 The input/output transfer instructions are used to control
 the operation of peripherals and transfer data between peri-
 pherals and the 6100 microprocessor. Of the lower 9 bits of the
 instruction used for device selection and control typically the
 3 LSBs are the I/O operation bits and the remaining 6 bits
 select the peripheral device.

 IOT DEV,CMND

 where DEV is the device select code and
 CMND is the command code.

 Specifying a device select code of zero in the IOT instruction
 allows the user program to control the interrupt mechanism of
 the 6100 microprocessor. These instructions are:

 SKON Skip If Interrupt On
 ION Interrupt Turn On
 IOF Interrupt Turn Off
 SRQ Skip If Int Request
 GTF GetFlags
 RTF Return Flags
 SGT Defined By Device Logic
 CAF Clear All Flags

 APPENDIX AF

 AS61860 ASSEMBLER

 AF.1 ACKNOWLEDGMENT

 Thanks to Edgar Puehringer for his contribution of the
 AS61860 cross assembler.

 Edgar Peuhringer
 edgar_pue at yahoo dot com

 AF.2 61860 REGISTER SET

 The SC61860 from Sharp has 96 bytes of internal RAM which are
 used as registers and hardware stack. The last four bytes of
 the internal RAM are special purpose registers (I/O, timers
 ...). Here is a list of the 61860 registers:

 Reg Address Common use
 --- ------- ----------
 i, j 0, 1 Length of block operations
 a, b 2, 3 Accumulator
 xl, xh 4, 5 Pointer for read operations
 yl, yh 6, 7 Pointer for write operations
 k - n 8 - 0x0b General purpose (counters ...)
 - 0x0c - 0x5b Stack
 ia 0x5c Inport A
 ib 0x5d Inport B
 fo 0x5e Outport F
 cout 0x5f Control port

 Other parts of the 61860 are the 16 bit program counter (pc)
 and 16 bit data pointer (dp). The ALU has a carry flag (c) and

 AS61860 ASSEMBLER PAGE AF-2
 61860 REGISTER SET

 a zero flag (z). There is an internal register d which can't be
 accessed with machine instructions. It is filled from i or j
 when executing block operations.

 In addition there are three 7 bit registers p, q, and r which
 are used to address the internal RAM (r is the stack pointer, p
 and q are used for block operations).

 AF.3 PROCESSOR SPECIFIC DIRECTIVES

 The AS61860 cross assembler has two (2) processor specific
 assembler directives which are used for the etc mnemonic (which
 is a kind of a built-in switch/case statement):

 .default A 16 bit address (same as .dw)
 .case One byte followed by a 16 bit address

 Here is an example how this should be used (cut from a lst
 file)::

 022B 7A 05 02 18 614 PTC 0x05, CONT16
 022F 69 615 DTC
 0230 4C 01 25 616 .CASE 0x4C, SLOADI
 0233 4D 01 2F 617 .CASE 0x4D, SMERGI
 0236 51 01 D2 618 .CASE 0x51, QUITI
 0239 53 00 CD 619 .CASE 0x53, LLISTI
 023C 56 01 D5 620 .CASE 0x56, VERI
 023F 01 D1 621 .DEFAULT CONT9

 AF.4 61860 INSTRUCTION SET

 The following tables list all 61860 family mnemonics recog-
 nized by the AS61860 assembler. Most of the mnemonics are con-
 verted into 8 bit machine instructions with no argument or a
 one- or two-byte argument. There are some exceptions for this:

 Mnemonic Description
 -------- -----------
 jp 2 bit instruction, 6 bit argument
 cal 3 bit instruction, 13 bit argument
 ptc *) 1 byte instruction, 3 byte argument
 dtc *) 1 byte instruction, n bytes argument

 *) Not mentioned in the CPU specification from Sharp

 AS61860 ASSEMBLER PAGE AF-3
 61860 INSTRUCTION SET

 AF.4.1 Load Immediate Register

 LII n (n --> I)
 LIJ n
 LIA n
 LIB n
 LIP n
 LIQ n
 LIDP nm
 LIDL n (DL is the low byte of DP)
 LP (One byte version of LIP)
 RA (Same as LIA 0, but only one byte)
 CLRA (synonym for RA)

 AF.4.2 Load Accumulator

 LDP (P --> A)
 LDQ
 LDR
 LDM ((P) --> A)
 LDD ((DP) --> A)

 AF.4.3 Store Accumulator

 STP (A --> P)
 STQ
 STR
 STD (A --> (DP))

 AF.4.4 Move Data

 MVDM ((P) --> (DP))
 MVMD ((DP) --> (P))

 AS61860 ASSEMBLER PAGE AF-4
 61860 INSTRUCTION SET

 AF.4.5 Exchange Data

 EXAB (A <--> B)
 EXAM (A <--> (P))

 AF.4.6 Stack Operations

 PUSH (R - 1 --> R, A --> (R))
 POP ((R) --> A, R + 1 --> R)
 LEAVE (0 --> (R))

 AF.4.7 Block Move Data

 MVW ((Q) --> (P), I+1 bytes)
 MVB ((Q) --> (P), J+1 bytes)
 MVWD ((DP) --> (P), I+1 bytes)
 MVBD ((DP) --> (P), J+1 bytes)
 DATA ((B,A) --> (P), I+1 bytes,
 reads CPU ROM also)

 AF.4.8 Block Exchange Data

 EXW ((Q) <--> (P), I+1 bytes)
 EXB ((Q) <--> (P), J+1 bytes)
 EXWD ((DP) <--> (P), I+1 bytes)
 EXBD ((DP) <--> (P), J+1 bytes)

 AS61860 ASSEMBLER PAGE AF-5
 61860 INSTRUCTION SET

 AF.4.9 Increment and Decrement

 INCP (P + 1 --> P)
 DECP
 INCI
 DECI
 INCJ
 DECJ
 INCA
 DECA
 INCB
 DECB
 INCK
 DECK
 INCL
 DECL
 IX (X + 1 --> X, X --> DP)
 DX
 IY
 DY
 INCM *)
 DECM *)
 INCN *)
 DECN *)

 *) Not mentioned in the CPU specification from Sharp

 AF.4.10 Increment/Decrement with Load/Store

 IXL (Same as IX plus LDD)
 DXL
 IYS (Same as IY plus STD)
 DYS

 AS61860 ASSEMBLER PAGE AF-6
 61860 INSTRUCTION SET

 AF.4.11 Fill

 FILM (A --> (P), I+1 bytes)
 FILD (A --> (DP), I+1 bytes)

 AF.4.12 Addition and Subtraction

 ADIA n (A + n --> A)
 SBIA n
 ADIM n ((P) + n --> (P))
 SBIM n
 ADM n ((P) + A --> (P))
 SBM n
 ADCM n ((P) + A --> (P), with carry)
 SBCM
 ADB (like ADM, but 16 bit)
 SBB
 ADN (like ADM, BCD addition, I+1 bytes)
 SBN
 ADW ((P) + (Q) --> (P), BCD, I+1 bytes)
 SBW

 AF.4.13 Shift Operations

 SRW (shift I+1 bytes in (P) 4 bits right)
 SLW
 SR (shift A 1 bit, with carry)
 SL
 SWP (exchange low and high nibble of A)

 AF.4.14 Boolean Operations

 ANIA n (A & n --> A)
 ORIA n
 ANIM n ((P) & n --> (P))
 ORIM n
 ANID n ((DP) & n --> (DP))
 ORID n
 ANMA ((P) & A --> (P))
 ORMA

 AS61860 ASSEMBLER PAGE AF-7
 61860 INSTRUCTION SET

 AF.4.15 Compare

 CPIA n (A - n --> c,z)
 CPIM n ((P) - n --> c,z)
 CPMA ((P) - A --> c,z)
 TSIA n (A & n --> z)
 TSIM n ((P) & n --> z)
 TSID n ((DP) & n --> z)
 TSIP ((P) & A --> z)

 AF.4.16 CPU Control

 SC (Set carry)
 RC
 NOPW (no op)
 NOPT
 WAIT n (wait 6+n cycles)
 WAITJ (wait 5+4*I cycles)
 CUP (synonym for WAITJ)

 AF.4.17 Absolute Jumps

 JP nm
 JPZ nm (on zero)
 JPNZ nm
 JPC nm
 JPNC nm
 PTC/DTC (see 'Processor Specific Directives')
 PTJ/DTJ (synonym for PTD/DTC)
 CPCAL/DTLRA (synonym for PTC/DTC)
 CASE1/CASE2 (synonym for PTC/DTC)
 SETT/JST (synonym for PTC/DTC)

 AS61860 ASSEMBLER PAGE AF-8
 61860 INSTRUCTION SET

 AF.4.18 Relative Jumps

 These operations handle a jump relative to PC forward and
 back with a maximum distance of 255 byte. The assembler
 resolves 16 bit addresses to to 8 bit relative adresses. If the
 target address is to far away, an error will be generated. Note
 that relative jumps need 1 byte less than absolute jumps.

 JRP nm
 JRZP nm
 JRNZP nm (jump relative non zero plus direction)
 JRCP nm
 JRNCP nm
 JRM nm
 JRZM nm
 JRNZM nm
 JRCM nm (jump relative on carry minus direction)
 JRNCM nm
 LOOP nm (decrements (R) and makes a JRNCM)

 AF.4.19 Calls

 CALL nm
 CAL nm (nm must be <= 0x1fff,
 1 byte less code than CALL)
 RTN

 AF.4.20 Input and output

 INA (IA --> A)
 INB
 OUTA
 OUTB
 OUTF (A --> FO)
 OUTC (control port)
 TEST n (timers, pins & n --> z)

 AS61860 ASSEMBLER PAGE AF-9
 61860 INSTRUCTION SET

 AF.4.21 Unknown Commands

 READ ((PC+1) -> A)
 READM ((PC+1) -> (P))
 WRIT (???)

 APPENDIX AG

 AS6500 ASSEMBLER

 AG.1 ACKNOWLEDGMENT

 Thanks to Marko Makela for his contribution of the AS6500
 cross assembler.

 Marko Makela
 Sillitie 10 A
 01480 Vantaa
 Finland
 Internet: Marko dot Makela at Helsinki dot Fi
 EARN/BitNet: msmakela at finuh

 Several additions and modifications were made to his code to
 support the following families of 6500 processors:

 (1) 650X and 651X processor family
 (2) 65F11 and 65F12 processor family
 (3) 65C00/21 and 65C29 processor family
 (4) 65C02, 65C102, and 65C112 processor family

 The instruction syntax of this cross assembler contains two
 peculiarities: (1) the addressing indirection is denoted by the
 square brackets [] and (2) the `bbrx' and `bbsx' instructions
 are written `bbr0 memory,label'.

 AS6500 ASSEMBLER PAGE AG-2
 6500 REGISTER SET

 AG.2 6500 REGISTER SET

 The following is a list of the 6500 registers used by AS6500:

 a - 8-bit accumulator
 x,y - index registers

 AG.3 6500 INSTRUCTION SET

 The following tables list all 6500 family mnemonics recog-
 nized by the AS6500 assembler. The designation [] refers to a
 required addressing mode argument. The following list specifies
 the format for each addressing mode supported by AS6500:

 #data immediate data
 byte or word data

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 offset,x indexed addressing
 offset,y indexed addressing
 address = (offset + (x or y))

 [offset,x] pre-indexed indirect addressing
 0 <= offset <= 255
 address = contents of location
 (offset + (x or y)) mod 256

 [offset],y post-indexed indirect addressing
 address = contents of location at offset
 plus the value of the y register

 [address] indirect addressing

 ext extended addressing

 label branch label

 address,label direct page memory location
 branch label
 bbrx and bbsx instruction addressing

 The terms data, dir, offset, address, ext, and label may all be
 expressions.

 AS6500 ASSEMBLER PAGE AG-3
 6500 INSTRUCTION SET

 Note that not all addressing modes are valid with every in-
 struction, refer to the 65xx technical data for valid modes.

 AG.3.1 Processor Specific Directives

 The AS6500 cross assembler has four (4) processor specific
 assembler directives which define the target 65xx processor
 family:

 .r6500 Core 650X and 651X family (default)
 .r65f11 Core plus 65F11 and 65F12
 .r65c00 Core plus 65C00/21 and 65C29
 .r65c02 Core plus 65C02, 65C102, and 65C112

 AG.3.2 65xx Core Inherent Instructions

 brk clc
 cld cli
 clv dex
 dey inx
 iny nop
 pha php
 pla plp
 rti rts
 sec sed
 sei tax
 tay tsx
 txa txs
 tya

 AG.3.3 65xx Core Branch Instructions

 bcc label bhs label
 bcs label blo label
 beq label bmi label
 bne label bpl label
 bvc label bvs label

 AS6500 ASSEMBLER PAGE AG-4
 6500 INSTRUCTION SET

 AG.3.4 65xx Core Single Operand Instructions

 asl []
 dec []
 inc []
 lsr []
 rol []
 ror []

 AG.3.5 65xx Core Double Operand Instructions

 adc []
 and []
 bit []
 cmp []
 eor []
 lda []
 ora []
 sbc []
 sta []

 AG.3.6 65xx Core Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 AG.3.7 65xx Core Miscellaneous X and Y Register Instructions

 cpx []
 cpy []
 ldx []
 stx []
 ldy []
 sty []

 AS6500 ASSEMBLER PAGE AG-5
 6500 INSTRUCTION SET

 AG.3.8 65F11 and 65F12 Specific Instructions

 bbr0 [],label bbr1 [],label
 bbr2 [],label bbr3 [],label
 bbr4 [],label bbr5 [],label
 bbr6 [],label bbr7 [],label

 bbs0 [],label bbs1 [],label
 bbs2 [],label bbs3 [],label
 bbs4 [],label bbs5 [],label
 bbs6 [],label bbs7 [],label

 rmb0 [] rmb1 []
 rmb2 [] rmb3 []
 rmb4 [] rmb5 []
 rmb6 [] rmb7 []

 smb0 [] smb1 []
 smb2 [] smb3 []
 smb4 [] smb5 []
 smb6 [] smb7 []

 AG.3.9 65C00/21 and 65C29 Specific Instructions

 bbr0 [],label bbr1 [],label
 bbr2 [],label bbr3 [],label
 bbr4 [],label bbr5 [],label
 bbr6 [],label bbr7 [],label

 bbs0 [],label bbs1 [],label
 bbs2 [],label bbs3 [],label
 bbs4 [],label bbs5 [],label
 bbs6 [],label bbs7 [],label

 bra label

 phx phy
 plx ply

 rmb0 [] rmb1 []
 rmb2 [] rmb3 []
 rmb4 [] rmb5 []
 rmb6 [] rmb7 []

 smb0 [] smb1 []
 smb2 [] smb3 []
 smb4 [] smb5 []
 smb6 [] smb7 []

 AS6500 ASSEMBLER PAGE AG-6
 6500 INSTRUCTION SET

 AG.3.10 65C02, 65C102, and 65C112 Specific Instructions

 bbr0 [],label bbr1 [],label
 bbr2 [],label bbr3 [],label
 bbr4 [],label bbr5 [],label
 bbr6 [],label bbr7 [],label

 bbs0 [],label bbs1 [],label
 bbs2 [],label bbs3 [],label
 bbs4 [],label bbs5 [],label
 bbs6 [],label bbs7 [],label

 bra label

 phx phy
 plx ply

 rmb0 [] rmb1 []
 rmb2 [] rmb3 []
 rmb4 [] rmb5 []
 rmb6 [] rmb7 []

 smb0 [] smb1 []
 smb2 [] smb3 []
 smb4 [] smb5 []
 smb6 [] smb7 []

 stz []
 trb []
 tsb []

 Additional addressing modes for the following core instruc-
 tions are also available with the 65C02, 65C102, and 65C112 pro-
 cessors.

 adc [] and []
 cmp [] eor []
 lda [] ora []
 sbc [] sta []

 bit [] jmp []

 dec inc

 APPENDIX AH

 AS6800 ASSEMBLER

 AH.1 6800 REGISTER SET

 The following is a list of the 6800 registers used by AS6800:

 a,b - 8-bit accumulators
 x - index register

 AH.2 6800 INSTRUCTION SET

 The following tables list all 6800/6802/6808 mnemonics recog-
 nized by the AS6800 assembler. The designation [] refers to a
 required addressing mode argument. The following list specifies
 the format for each addressing mode supported by AS6800:

 #data immediate data
 byte or word data

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 ,x register indirect addressing
 zero offset

 offset,x register indirect addressing
 0 <= offset <= 255

 ext extended addressing

 label branch label

 AS6800 ASSEMBLER PAGE AH-2
 6800 INSTRUCTION SET

 The terms data, dir, offset, ext, and label may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 6800 technical data for valid modes.

 AH.2.1 Inherent Instructions

 aba cba
 clc cli
 clv daa
 des dex
 ins inx
 nop rti
 rts sba
 sec sei
 sev swi
 tab tap
 tba tpa
 tsx txs
 wai

 psha pshb
 psh a psh b
 pula pulb
 pul a pul b

 AH.2.2 Branch Instructions

 bra label bhi label
 bls label bcc label
 bhs label bcs label
 blo label bne label
 beq label bvc label
 bvs label bpl label
 bmi label bge label
 blt label bgt label
 ble label bsr label

 AS6800 ASSEMBLER PAGE AH-3
 6800 INSTRUCTION SET

 AH.2.3 Single Operand Instructions

 asla aslb
 asl a asl b
 asl []

 asra asrb
 asr a asr b
 asr []

 clra clrb
 clr a clr b
 clr []

 coma comb
 com a com b
 com []

 deca decb
 dec a dec b
 dec []

 inca incb
 inc a inc b
 inc []

 lsla lslb
 lsl a lsl b
 lsl []

 lsra lsrb
 lsr a lsr b
 lsr []

 nega negb
 neg a neg b
 neg []

 rola rolb
 rol a rol b
 rol []

 rora rorb
 ror a ror b
 ror []

 tsta tstb
 tst a tst b
 tst []

 AS6800 ASSEMBLER PAGE AH-4
 6800 INSTRUCTION SET

 AH.2.4 Double Operand Instructions

 adca [] adcb []
 adc a [] adc b []

 adda [] addb []
 add a [] add b []

 anda [] andb []
 and a [] and b []

 bita [] bitb []
 bit a [] bit b []

 cmpa [] cmpb []
 cmp a [] cmp b []

 eora [] eorb []
 eor a [] eor b []

 ldaa [] ldab []
 lda a [] lda b []

 oraa [] orab []
 ora a [] ora b []

 sbca [] sbcb []
 sbc a [] sbc b []

 staa [] stab []
 sta a [] sta b []

 suba [] subb []
 sub a [] sub b []

 AH.2.5 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 AS6800 ASSEMBLER PAGE AH-5
 6800 INSTRUCTION SET

 AH.2.6 Long Register Instructions

 cpx []
 lds [] sts []
 ldx [] stx []

 APPENDIX AI

 AS6801 ASSEMBLER

 AI.1 .hd6303 DIRECTIVE

 Format:

 .hd6303

 The .hd6303 directive enables processing of the HD6303 specific
 mnemonics not included in the 6801 instruction set. HD6303
 mnemonics encountered without the .hd6303 directive will be
 flagged with an <o> error.

 AI.2 6801 REGISTER SET

 The following is a list of the 6801 registers used by AS6801:

 a,b - 8-bit accumulators
 d - 16-bit accumulator <a:b>
 x - index register

 AI.3 6801 INSTRUCTION SET

 The following tables list all 6801/6803/6303 mnemonics recog-
 nized by the AS6801 assembler. The designation [] refers to a
 required addressing mode argument. The following list specifies
 the format for each addressing mode supported by AS6801:

 #data immediate data
 byte or word data

 *dir direct page addressing

 AS6801 ASSEMBLER PAGE AI-2
 6801 INSTRUCTION SET

 (see .setdp directive)
 0 <= dir <= 255

 ,x register indirect addressing
 zero offset

 offset,x register indirect addressing
 0 <= offset <= 255

 ext extended addressing

 label branch label

 The terms data, dir, offset, ext, and label may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 6801/6303 technical data for valid
 modes.

 AI.3.1 Inherent Instructions

 aba abx
 cba clc
 cli clv
 daa des
 dex ins
 inx mul
 nop rti
 rts sba
 sec sei
 sev swi
 tab tap
 tba tpa
 tsx txs
 wai

 AS6801 ASSEMBLER PAGE AI-3
 6801 INSTRUCTION SET

 AI.3.2 Branch Instructions

 bra label brn label
 bhi label bls label
 bcc label bhs label
 bcs label blo label
 bne label beq label
 bvc label bvs label
 bpl label bmi label
 bge label blt label
 bgt label ble label
 bsr label

 AI.3.3 Single Operand Instructions

 asla aslb asld
 asl a asl b asl d
 asl []

 asra asrb
 asr a asr b
 asr []

 clra clrb
 clr a clr b
 clr []

 coma comb
 com a com b
 com []

 deca decb
 dec a dec b
 dec []

 eora eorb
 eor a eor b
 eor []

 inca incb
 inc a inc b
 inc []

 lsla lslb lsld
 lsl a lsl b lsl d
 lsl []

 lsra lsrb lsrd

 AS6801 ASSEMBLER PAGE AI-4
 6801 INSTRUCTION SET

 lsr a lsr b lsr d
 lsr []

 nega negb
 neg a neg b
 neg []

 psha pshb pshx
 psh a psh b psh x

 pula pulb pulx
 pul a pul b pul x

 rola rolb
 rol a rol b
 rol []

 rora rorb
 ror a ror b
 ror []

 tsta tstb
 tst a tst b
 tst []

 AS6801 ASSEMBLER PAGE AI-5
 6801 INSTRUCTION SET

 AI.3.4 Double Operand Instructions

 adca [] adcb []
 adc a [] adc b []

 adda [] addb [] addd []
 add a [] add b [] add d []

 anda [] andb []
 and a [] and b []

 bita [] bitb []
 bit a [] bit b []

 cmpa [] cmpb []
 cmp a [] cmp b []

 ldaa [] ldab []
 lda a [] lda b []

 oraa [] orab []
 ora a [] ora b []

 sbca [] sbcb []
 sbc a [] sbc b []

 staa [] stab []
 sta a [] sta b []

 suba [] subb [] subd []
 sub a [] sub b [] sub d []

 AI.3.5 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 AS6801 ASSEMBLER PAGE AI-6
 6801 INSTRUCTION SET

 AI.3.6 Long Register Instructions

 cpx [] ldd []
 lds [] ldx []
 std [] sts []
 stx []

 AI.3.7 6303 Specific Instructions

 aim #data, [] eim #data, []
 oim #data, [] tim #data, []

 xgdx slp

 APPENDIX AJ

 AS6804 ASSEMBLER

 Requires the .setdp directive to specify the ram area.

 AJ.1 6804 REGISTER SET

 The following is a list of the 6804 registers used by AS6804:

 x,y - index registers

 AJ.2 6804 INSTRUCTION SET

 The following tables list all 6804 mnemonics recognized by
 the AS6804 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by AS6804:

 #data immediate data
 byte or word data

 ,x register indirect addressing

 dir direct addressing
 (see .setdp directive)
 0 <= dir <= 255

 ext extended addressing

 label branch label

 The terms data, dir, and ext may be expressions. The label for
 the short branchs beq, bne, bcc, and bcs must not be external.

 AS6804 ASSEMBLER PAGE AJ-2
 6804 INSTRUCTION SET

 Note that not all addressing modes are valid with every in-
 struction, refer to the 6804 technical data for valid modes.

 AJ.2.1 Inherent Instructions

 coma decx
 decy incx
 incy rola
 rti rts
 stop tax
 tay txa
 tya wait

 AJ.2.2 Branch Instructions

 bne label beq label
 bcc label bcs label

 AJ.2.3 Single Operand Instructions

 add []
 and []
 cmp []
 dec []
 inc []
 lda []
 sta []
 sub []

 AJ.2.4 Jump and Jump to Subroutine Instructions

 jsr []
 jmp []

 AS6804 ASSEMBLER PAGE AJ-3
 6804 INSTRUCTION SET

 AJ.2.5 Bit Test Instructions

 brclr #data,[],label
 brset #data,[],label

 bclr #label,[]
 bset #label,[]

 AJ.2.6 Load Immediate data Instruction

 mvi [],#data

 AJ.2.7 6804 Derived Instructions

 asla
 bam label
 bap label
 bxmi label
 bxpl label
 bymi label
 bypl label
 clra
 clrx
 clry
 deca
 decx
 decy
 inca
 incx
 incy
 ldxi #data
 ldyi #data
 nop
 tax
 tay
 txa
 tya

 APPENDIX AK

 AS68(HC)05 ASSEMBLER

 AK.1 .6805 DIRECTIVE

 Format:

 .6805

 The .6805 directive selects the MC6805 specific cycles count to
 be output.

 AK.2 .hc05 DIRECTIVE

 Format:

 .hc05

 The .hc05 directive selects the MC68HC05/146805 specific cycles
 count to be output.

 AK.3 THE .__.CPU. VARIABLE

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the ASZ80
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .6805 0
 .hc05 1

 AS68(HC)05 ASSEMBLER PAGE AK-2
 THE .__.CPU. VARIABLE

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 AK.4 6805 REGISTER SET

 The following is a list of the 6805 registers used by AS6805:

 a - 8-bit accumulator
 x - index register

 AK.5 6805 INSTRUCTION SET

 The following tables list all 6805 mnemonics recognized by
 the AS6805 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by AS6805:

 #data immediate data
 byte or word data

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 ,x register indirect addressing
 zero offset

 offset,x register indirect addressing
 0 <= offset <= 255 --- byte mode
 256 <= offset <= 65535 --- word mode
 (an externally defined offset uses the
 word mode)

 ext extended addressing

 AS68(HC)05 ASSEMBLER PAGE AK-3
 6805 INSTRUCTION SET

 label branch label

 The terms data, dir, offset, and ext may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 6805 technical data for valid modes.

 AK.5.1 Control Instructions

 clc cli
 nop rsp
 rti rts
 sec sei
 stop swi
 tax txa
 wait

 AK.5.2 Bit Manipulation Instructions

 brset #data,*dir,label
 brclr #data,*dir,label

 bset #data,*dir
 bclr #data,*dir

 AK.5.3 Branch Instructions

 bra label brn label
 bhi label bls label
 bcc label bcs label
 bne label beq label
 bhcc label bhcs label
 bpl label bmi label
 bmc label bms label
 bil label bih label
 bsr label

 AS68(HC)05 ASSEMBLER PAGE AK-4
 6805 INSTRUCTION SET

 AK.5.4 Read-Modify-Write Instructions

 nega negx
 neg []

 coma comx
 com []

 lsra lsrx
 lsr []

 rora rorx
 ror []

 asra asrx
 asr []

 lsla lslx
 lsl []

 rola rolx
 rol []

 deca decx
 dec []

 inca incx
 inc []

 tsta tstx
 tst []

 clra clrx
 clr []

 AK.5.5 Register\Memory Instructions

 sub [] cmp []
 sbc [] cpx []
 and [] bit []
 lda [] sta []
 eor [] adc []
 ora [] add []
 ldx [] stx []

 AS68(HC)05 ASSEMBLER PAGE AK-5
 6805 INSTRUCTION SET

 AK.5.6 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 APPENDIX AL

 AS68(HC[S])08 ASSEMBLER

 AL.1 PROCESSOR SPECIFIC DIRECTIVES

 The MC68HC(S)08 processor is a superset of the MC6805 proces-
 sors. The AS6808 assembler supports the HC08, HCS08, 6805, and
 HC05 cores.

 AL.1.1 .hc08 Directive

 Format:

 .hc08

 The .hc08 directive enables processing of only the HC08 specific
 mnemonics. 6805/HC05/HCS08 mnemonics encountered without the
 .hc08 directive will be flagged with an <o> error.

 The .hc08 directive also selects the HC08 specific cycles
 count to be output.

 AS68(HC[S])08 ASSEMBLER PAGE AL-2
 PROCESSOR SPECIFIC DIRECTIVES

 AL.1.2 .hcs08 Directive

 Format:

 .hcs08

 The .hcs08 directive enables processing of the HCS08 specific
 mnemonics.

 The .hcs08 directive also selects the HCS08 specific cycles
 count to be output.

 AL.1.3 .6805 Directive

 Format:

 .6805

 The .6805 directive enables processing of only the 6805/HC05
 specific mnemonics. HC08/HCS08 mnemonics encountered without
 the .hc08/.hcs08 directives will be flagged with an <o> error.

 The .6805 directive also selects the MC6805 specific cycles
 count to be output.

 AL.1.4 .hc05 Directive

 Format:

 .hc05

 The .hc05 directive enables processing of only the 6805/HC05
 specific mnemonics. HC08/HCS08 mnemonics encountered without
 the .hc08/.hcs08 directives will be flagged with an <o> error.

 The .hc05 directive also selects the MC68HC05/146805 specific
 cycles count to be output.

 AS68(HC[S])08 ASSEMBLER PAGE AL-3
 PROCESSOR SPECIFIC DIRECTIVES

 AL.1.5 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the AS6808
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .hc08 0
 .hcs08 1
 .6805 2
 .hc05 3

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 AL.2 68HC(S)08 REGISTER SET

 The following is a list of the 68HC(S)08 registers used by
 AS6808:

 a - 8-bit accumulator
 x - index register <H:X>
 s - stack pointer

 AS68(HC[S])08 ASSEMBLER PAGE AL-4
 68HC(S)08 INSTRUCTION SET

 AL.3 68HC(S)08 INSTRUCTION SET

 The following tables list all 68HC(S)08 mnemonics recognized
 by the AS6808 assembler. The designation [] refers to a re-
 quired addressing mode argument. The following list specifies
 the format for each addressing mode supported by AS6808:

 #data immediate data
 byte or word data

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 ,x register indexed addressing
 zero offset

 offset,x register indexed addressing
 0 <= offset <= 255 --- byte mode
 256 <= offset <= 65535 --- word mode
 (an externally defined offset uses the
 word mode)

 ,x+ register indexed addressing
 zero offset with post increment

 offset,x+ register indexed addressing
 unsigned byte offset with post increment

 offset,s stack pointer indexed addressing
 0 <= offset <= 255 --- byte mode
 256 <= offset <= 65535 --- word mode
 (an externally defined offset uses the
 word mode)

 ext extended addressing

 label branch label

 The terms data, dir, offset, and ext may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 68HC(S)08 technical data for valid
 modes.

 AS68(HC[S])08 ASSEMBLER PAGE AL-5
 68HC(S)08 INSTRUCTION SET

 AL.3.1 Control Instructions

 clc cli daa div
 mul nop nsa psha
 pshh pshx pula pulh
 pulx rsp rti rts
 sec sei stop swi
 tap tax tpa tsx
 txa txs wait

 AL.3.2 Bit Manipulation Instructions

 brset #data,*dir,label
 brclr #data,*dir,label

 bset #data,*dir
 bclr #data,*dir

 AL.3.3 Branch Instructions

 bra label brn label
 bhi label bls label
 bcc label bcs label
 bne label beq label
 bhcc label bhcs label
 bpl label bmi label
 bmc label bms label
 bil label bih label
 bsr label bge label
 blt label bgt label
 ble label

 AL.3.4 Complex Branch Instructions

 cbeqa [],label
 cbeqx [],label
 cbeq [],label
 dbnza label
 dbnzx label
 dbnz [],label

 AS68(HC[S])08 ASSEMBLER PAGE AL-6
 68HC(S)08 INSTRUCTION SET

 AL.3.5 Read-Modify-Write Instructions

 nega negx
 neg []

 coma comx
 com []

 lsra lsrx
 lsr []

 rora rorx
 ror []

 asra asrx
 asr []

 asla aslx
 asl []

 lsla lslx
 lsl []

 rola rolx
 rol []

 deca decx
 dec []

 inca incx
 inc []

 tsta tstx
 tst []

 clra clrx
 clr [] clrh

 aix #data

 ais #data

 AS68(HC[S])08 ASSEMBLER PAGE AL-7
 68HC(S)08 INSTRUCTION SET

 AL.3.6 Register\Memory Instructions

 sub [] cmp []
 sbc [] cpx []
 and [] bit []
 lda [] sta []
 eor [] adc []
 ora [] add []
 ldx [] stx []

 AL.3.7 Double Operand Move Instruction

 mov [],[]

 AL.3.8 16-Bit <H:X> Index Register Instructions

 cphx []
 ldhx []
 sthx []

 AL.3.9 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 APPENDIX AM

 AS6809 ASSEMBLER

 AM.1 6809 REGISTER SET

 The following is a list of the 6809 registers used by AS6809:

 a,b - 8-bit accumulators
 d - 16-bit accumulator <a:b>
 x,y - index registers
 s,u - stack pointers
 pc - program counter
 cc - condition code
 dp - direct page

 AM.2 6809 INSTRUCTION SET

 The following tables list all 6809 mnemonics recognized by
 the AS6809 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by AS6809:

 #data immediate data
 byte or word data

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 label branch label

 r,r1,r2 registers
 cc,a,b,d,dp,x,y,s,u,pc

 AS6809 ASSEMBLER PAGE AM-2
 6809 INSTRUCTION SET

 ,-x ,--x register indexed
 autodecrement

 ,x+ ,x++ register indexed
 autoincrement

 ,x register indexed addressing
 zero offset

 offset,x register indexed addressing
 -16 <= offset <= 15 --- 5-bit
 -128 <= offset <= -17 --- 8-bit
 16 <= offset <= 127 --- 8-bit
 -32768 <= offset <= -129 --- 16-bit
 128 <= offset <= 32767 --- 16-bit
 (external definition of offset
 uses 16-bit mode)

 a,x accumulator offset indexed addressing

 ext extended addressing

 ext,pc pc addressing (pc <- pc + ext)

 ext,pcr pc relative addressing

 [,--x] register indexed indirect
 autodecrement

 [,x++] register indexed indirect
 autoincrement

 [,x] register indexed indirect addressing
 zero offset

 [offset,x] register indexed indirect addressing
 -128 <= offset <= 127 --- 8-bit
 -32768 <= offset <= -129 --- 16-bit
 128 <= offset <= 32767 --- 16-bit
 (external definition of offset
 uses 16-bit mode)

 [a,x] accumulator offset indexed
 indirect addressing

 [ext] extended indirect addressing

 [ext,pc] pc indirect addressing
 ([pc <- pc + ext])

 AS6809 ASSEMBLER PAGE AM-3
 6809 INSTRUCTION SET

 [ext,pcr] pc relative indirect addressing

 The terms data, dir, label, offset, and ext may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 6809 technical data for valid modes.

 AM.2.1 Inherent Instructions

 abx daa
 mul nop
 rti rts
 sex swi
 swi1 swi2
 swi3 sync

 AM.2.2 Short Branch Instructions

 bcc label bcs label
 beq label bge label
 bgt label bhi label
 bhis label bhs label
 ble label blo label
 blos label bls label
 blt label bmi label
 bne label bpl label
 bra label brn label
 bvc label bvs label
 bsr label

 AS6809 ASSEMBLER PAGE AM-4
 6809 INSTRUCTION SET

 AM.2.3 Long Branch Instructions

 lbcc label lbcs label
 lbeq label lbge label
 lbgt label lbhi label
 lbhis label lbhs label
 lble label lblo label
 lblos label lbls label
 lblt label lbmi label
 lbne label lbpl label
 lbra label lbrn label
 lbvc label lbvs label
 lbsr label

 AS6809 ASSEMBLER PAGE AM-5
 6809 INSTRUCTION SET

 AM.2.4 Single Operand Instructions

 asla aslb
 asl []

 asra asrb
 asr []

 clra clrb
 clr []

 coma comb
 com []

 deca decb
 dec []

 inca incb
 inc []

 lsla lslb
 lsl []

 lsra lsrb
 lsr []

 nega negb
 neg []

 rola rolb
 rol []

 rora rorb
 ror []

 tsta tstb
 tst []

 AS6809 ASSEMBLER PAGE AM-6
 6809 INSTRUCTION SET

 AM.2.5 Double Operand Instructions

 adca [] adcb []

 adda [] addb []

 anda [] andb []

 bita [] bitb []

 cmpa [] cmpb []

 eora [] eorb []

 lda [] ldb []

 ora [] orb []

 sbca [] sbcb []

 sta [] stb []

 suba [] subb []

 AM.2.6 D-register Instructions

 addd [] subd []
 cmpd [] ldd []
 std []

 AS6809 ASSEMBLER PAGE AM-7
 6809 INSTRUCTION SET

 AM.2.7 Index/Stack Register Instructions

 cmps [] cmpu []
 cmpx [] cmpy []

 lds [] ldu []
 ldx [] ldy []

 leas [] leau []
 leax [] leay []

 sts [] stu []
 stx [] sty []

 pshs r pshu r
 puls r pulu r

 AM.2.8 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 AM.2.9 Register - Register Instructions

 exg r1,r2 tfr r1,r2

 AM.2.10 Condition Code Register Instructions

 andcc #data orcc #data
 cwai #data

 AS6809 ASSEMBLER PAGE AM-8
 6809 INSTRUCTION SET

 AM.2.11 6800 Compatibility Instructions

 aba cba
 clc cli
 clv des
 dex ins
 inx
 ldaa [] ldab []
 oraa [] orab []
 psha pshb
 pula pulb
 sba sec
 sei sev
 staa [] stab []
 tab tap
 tba tpa
 tsx txs
 wai

 APPENDIX AN

 AS6811 ASSEMBLER

 AN.1 68HC11 REGISTER SET

 The following is a list of the 68HC11 registers used by AS6811:

 a,b - 8-bit accumulators
 d - 16-bit accumulator <a:b>
 x,y - index registers

 AN.2 68HC11 INSTRUCTION SET

 The following tables list all 68HC11 mnemonics recognized by
 the AS6811 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by AS6811:

 #data immediate data
 byte or word data

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 ,x register indirect addressing
 zero offset

 offset,x register indirect addressing
 0 <= offset <= 255

 ext extended addressing

 label branch label

 AS6811 ASSEMBLER PAGE AN-2
 68HC11 INSTRUCTION SET

 The terms data, dir, offset, and ext may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 68HC11 technical data for valid modes.

 AN.2.1 Inherent Instructions

 aba abx
 aby cba
 clc cli
 clv daa
 des dex
 dey fdiv
 idiv ins
 inx iny
 mul nop
 rti rts
 sba sec
 sei sev
 stop swi
 tab tap
 tba tpa
 tsx txs
 wai xgdx
 xgdy

 psha pshb
 psh a psh b
 pshx pshy
 psh x psh y

 pula pulb
 pul a pul b
 pulx puly
 pul x pul y

 AS6811 ASSEMBLER PAGE AN-3
 68HC11 INSTRUCTION SET

 AN.2.2 Branch Instructions

 bra label brn label
 bhi label bls label
 bcc label bhs label
 bcs label blo label
 bne label beq label
 bvc label bvs label
 bpl label bmi label
 bge label blt label
 bgt label ble label
 bsr label

 AS6811 ASSEMBLER PAGE AN-4
 68HC11 INSTRUCTION SET

 AN.2.3 Single Operand Instructions

 asla aslb asld
 asl a asl b asl d
 asl []

 asra asrb
 asr a asr b
 asr []

 clra clrb
 clr a clr b
 clr label

 coma comb
 com a com b
 com []

 deca decb
 dec a dec b
 dec []

 inca incb
 inc a inc b
 inc []

 lsla lslb lsld
 lsl a lsl b lsl d
 lsl []

 lsra lsrb lsrd
 lsr a lsr b lsr d
 lsr []

 nega negb
 neg a neg b
 neg []

 rola rolb
 rol a rol b
 rol []

 rora rorb
 ror a ror b
 ror []

 tsta tstb
 tst a tst b
 tst []

 AS6811 ASSEMBLER PAGE AN-5
 68HC11 INSTRUCTION SET

 AN.2.4 Double Operand Instructions

 adca [] adcb []
 adc a [] adc b []

 adda [] addb [] addd []
 add a [] add b [] add d []

 anda [] andb []
 and a [] and b []

 bita [] bitb []
 bit a [] bit b []

 cmpa [] cmpb []
 cmp a [] cmp b []

 eora [] eorb []
 eor a [] eor b []

 ldaa [] ldab []
 lda a [] lda b []

 oraa [] orab []
 ora a [] ora b []

 sbca [] sbcb []
 sbc a [] sbc b []

 staa [] stab []
 sta a [] sta b []

 suba [] subb [] subd []
 sub a [] sub b [] sub d []

 AN.2.5 Bit Manupulation Instructions

 bclr [],#data
 bset [],#data

 brclr [],#data,label
 brset [],#data,label

 AS6811 ASSEMBLER PAGE AN-6
 68HC11 INSTRUCTION SET

 AN.2.6 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 AN.2.7 Long Register Instructions

 cpx [] cpy []

 ldd [] lds []
 ldx [] ldy []

 std [] sts []
 stx [] sty []

 APPENDIX AO

 AS68(HC[S])12 ASSEMBLER

 AO.1 PROCESSOR SPECIFIC DIRECTIVES

 The AS6812 assembler supports the 68HC(S)12 series of
 microprocessors which includes the 68HC(S)8xx and 68HC(S)9xx
 series.

 AO.1.1 .hc12 Directive

 Format:

 .hc12

 The .hc12 directive selects the HC12 core specific cycles count
 to be output.

 AO.1.2 .hcs12 Directive

 Format:

 .hcs12

 The .hcs12 directive selects the HCS12 core specific cycles
 count to be output.

 AS68(HC[S])12 ASSEMBLER PAGE AO-2
 PROCESSOR SPECIFIC DIRECTIVES

 AO.1.3 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the AS6812
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .hc12 0
 .hcs12 1

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 AO.2 68HC(S)12 REGISTER SET

 The following is a list of the 68HC(S)12 registers used by
 AS6812:

 a,b - 8-bit accumulators
 d - 16-bit accumulator <a:b>
 x,y - index registers
 sp,s - stack pointer
 pc - program counter
 ccr,cc - condition code register

 AS68(HC[S])12 ASSEMBLER PAGE AO-3
 68HC(S)12 INSTRUCTION SET

 AO.3 68HC(S)12 INSTRUCTION SET

 The following tables list all 68HC(S)12 mnemonics recognized
 by the AS6812 assembler. The designation [] refers to a re-
 quired addressing mode argument. The following list specifies
 the format for each addressing mode supported by AS6812:

 #data immediate data
 byte or word data

 ext extended addressing

 pg memory page number

 *dir direct page addressing
 (see .setdp directive)
 0 <= dir <= 255

 label branch label

 r,r1,r2 registers
 ccr,a,b,d,x,y,sp,pc

 -x x- register indexed, pre or
 ,-x ,x- post autodecrement by 1

 n,-x n,x- register indexed, pre or
 post autodecrement by 1 - 8

 +x x+ register indexed, pre or
 ,+x ,x+ post autoincrement by 1

 n,+x n,x+ register indexed, pre or
 post autoincrement by 1 - 8

 offset,x register indexed addressing
 -16 <= offset <= 15 --- 5-bit
 -256 <= offset <= -17 --- 9-bit
 16 <= offset <= 255 --- 9-bit
 -32768 <= offset <= -257 --- 16-bit
 256 <= offset <= 32767 --- 16-bit
 (external definition of offset
 uses 16-bit mode)

 [offset,x] register indexed indirect addressing
 -32768 <= offset <= 32767 --- 16-bit

 [,x] register indexed indirect addressing

 AS68(HC[S])12 ASSEMBLER PAGE AO-4
 68HC(S)12 INSTRUCTION SET

 zero offset

 a,x accumulator offset indexed addressing

 [d,x] d accumulator offset indexed
 indirect addressing

 The terms data, dir, label, offset, and ext may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 68HC(S)12 technical data for valid
 modes.

 AO.3.1 Inherent Instructions

 aba bgnd cba
 daa dex dey
 ediv edivs emul
 emuls fdiv idiv
 idivs inx iny
 mem mul nop
 psha pshb pshc
 pshd pshx pshy
 pula pulb pulc
 puld pulx puly
 rev revw rtc
 rti rts sba
 stop swi tab
 tba wai wav
 wavr

 AS68(HC[S])12 ASSEMBLER PAGE AO-5
 68HC(S)12 INSTRUCTION SET

 AO.3.2 Short Branch Instructions

 bcc label bcs label
 beq label bge label
 bgt label bhi label
 bhis label bhs label
 ble label blo label
 blos label bls label
 blt label bmi label
 bne label bpl label
 bra label brn label
 bvc label bvs label
 bsr label

 AO.3.3 Long Branch Instructions

 lbcc label lbcs label
 lbeq label lbge label
 lbgt label lbhi label
 lbhis label lbhs label
 lble label lblo label
 lblos label lbls label
 lblt label lbmi label
 lbne label lbpl label
 lbra label lbrn label
 lbvc label lbvs label

 AO.3.4 Branch on Decrement, Test, or Increment

 dbeq r,label dbne r,label
 ibeq r,label ibne r,label
 tbeq r,label tbne r,label

 AO.3.5 Bit Clear and Set Instructions

 bclr [],#data
 bset [],#data

 AS68(HC[S])12 ASSEMBLER PAGE AO-6
 68HC(S)12 INSTRUCTION SET

 AO.3.6 Branch on Bit Clear or Set

 brclr [],#data,label
 brset [],#data,label

 AO.3.7 Single Operand Instructions

 asla aslb
 asl []

 asra asrb
 asr []

 clra clrb
 clr []

 coma comb
 com []

 deca decb
 dec []

 inca incb
 inc []

 lsla lslb
 lsl []

 lsra lsrb
 lsr []

 nega negb
 neg []

 rola rolb
 rol []

 rora rorb
 ror []

 tsta tstb
 tst []

 AS68(HC[S])12 ASSEMBLER PAGE AO-7
 68HC(S)12 INSTRUCTION SET

 AO.3.8 Double Operand Instructions

 adca [] adcb []

 adda [] addb []

 anda [] andb []

 bita [] bitb []

 cmpa [] cmpb []

 eora [] eorb []

 ldaa [] <=> lda []

 ldab [] <=> ldb []

 oraa [] <=> ora []

 orab [] <=> orb []

 sbca [] sbcb []

 staa [] <=> sta []

 stab [] <=> stb []

 suba [] subb []

 AO.3.9 Move Instructions

 movb [],[] movw [],[]

 AO.3.10 D-register Instructions

 addd [] subd []
 cpd [] <=> cmpd []
 ldd [] std []

 AS68(HC[S])12 ASSEMBLER PAGE AO-8
 68HC(S)12 INSTRUCTION SET

 AO.3.11 Index/Stack Register Instructions

 cps [] <=> cmps []
 cpx [] <=> cmpx []
 cpy [] <=> cmpy []

 lds []
 ldx [] ldy []

 leas []
 leax [] leay []

 sts []
 stx [] sty []

 AO.3.12 Jump and Jump/Call to Subroutine Instructions

 call [],pg
 jmp [] jsr []

 AO.3.13 Other Special Instructions

 emacs []
 emaxd [] emaxm []
 emind [] eminm []
 etbl []
 maxa [] maxm []
 mina [] minm []
 tbl [] trap #data

 AO.3.14 Register - Register Instructions

 exg r1,r2 sex r1,r2
 tfr r1,r2

 AS68(HC[S])12 ASSEMBLER PAGE AO-9
 68HC(S)12 INSTRUCTION SET

 AO.3.15 Condition Code Register Instructions

 andcc #data orcc #data

 AO.3.16 M68HC11 Compatibility Mode Instructions

 abx aby clc
 cli clv des
 ins sec sei
 sev tap tpa
 tsx tsy txs
 tys xgdx xgdy

 APPENDIX AP

 AS6816 ASSEMBLER

 AP.1 68HC16 REGISTER SET

 The following is a list of the 68HC16 registers used by AS6816:

 a,b - 8-bit accumulators
 d - 16-bit accumulator <a:b>
 e - 16-bit accumulator
 x,y,z - index registers
 k - address extension register
 s - stack pointer
 ccr - condition code

 AP.2 68HC16 INSTRUCTION SET

 The following tables list all 68HC16 mnemonics recognized by
 the AS6816 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by AS6816:

 #data immediate data
 byte or word data

 #xo,#yo local immediate data (mac / rmac)

 label branch label

 r register
 ccr,a,b,d,e,x,y,z,s

 ,x zero offset register indexed addressing
 ,x8

 AS6816 ASSEMBLER PAGE AP-2
 68HC16 INSTRUCTION SET

 ,x16

 offset,x register indexed addressing
 0 <= offset <= 255 --- 8-bit
 -32768 <= offset <= -1 --- 16-bit
 256 <= offset <= 32767 --- 16-bit
 (external definition of offset
 uses 16-bit mode)

 offset,x8 unsigned 8-bit offset indexed addressing
 offset,x16 signed 16-bit offset indexed addressing

 e,x accumulator offset indexed addressing

 ext extended addressing

 bank 64K bank number (jmp / jsr)

 The terms data, label, offset, bank, and ext may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 6816 technical data for valid modes.

 AS6816 ASSEMBLER PAGE AP-3
 68HC16 INSTRUCTION SET

 AP.2.1 Inherent Instructions

 aba abx aby abz
 ace aced ade adx
 ady adz aex aey
 aez bgnd cba daa
 ediv edivs emul emuls
 fdiv fmuls idiv ldhi
 lpstop mul nop psha
 pshb pshmac pula pulb
 pulmac rtr rts sba
 sde sted swi sxt
 tab tap tba tbek
 tbsk tbxk tbyk tbzk
 tde tdmsk tdp ted
 tedm tekb tem tmer
 tmet tmxed tpa tpd
 tskb tsx tsy tsz
 txkb txs txy txz
 tykb tys tyx tyz
 tzkb tzs tzx tzy
 wai xgab xgde xgdx
 xgdy xgdz xgex xgey
 xgez

 AP.2.2 Push/Pull Multiple Register Instructions

 pshm r,... pulm r,...

 AP.2.3 Short Branch Instructions

 bcc label bcs label
 beq label bge label
 bgt label bhi label
 bhis label bhs label
 ble label blo label
 blos label bls label
 blt label bmi label
 bne label bpl label
 bra label brn label
 bvc label bvs label
 bsr label

 AS6816 ASSEMBLER PAGE AP-4
 68HC16 INSTRUCTION SET

 AP.2.4 Long Branch Instructions

 lbcc label lbcs label
 lbeq label lbge label
 lbgt label lbhi label
 lbhis label lbhs label
 lble label lblo label
 lblos label lbls label
 lblt label lbmi label
 lbne label lbpl label
 lbra label lbrn label
 lbvc label lbvs label
 lbsr label

 AP.2.5 Bit Manipulation Instructions

 bclr [],#data
 bset [],#data

 brclr [],#data,label
 brset [],#data,label

 AS6816 ASSEMBLER PAGE AP-5
 68HC16 INSTRUCTION SET

 AP.2.6 Single Operand Instructions

 asla aslb
 asld asle
 aslm
 asl [] aslw []

 asra asrb
 asrd asre
 asrm
 asr [] asrw []

 clra clrb
 clrd clre
 clrm
 clr [] clrw []

 coma comb
 comd come
 com [] comw []

 deca decb
 dec [] decw []

 inca incb
 inc [] incw []

 lsla lslb
 lsld lsle
 lslm
 lsl [] lslw []

 lsra lsrb
 lsrd lsre
 lsr [] lsrw []

 nega negb
 negd nege
 neg [] negw []

 rola rolb
 rold role
 rol [] rolw []

 rora rorb
 rord rore
 ror [] rorw []

 tsta tstb

 AS6816 ASSEMBLER PAGE AP-6
 68HC16 INSTRUCTION SET

 tsta tste
 tst [] tstw []

 AP.2.7 Double Operand Instructions

 adca [] adcb []
 adcd [] adce []

 adda [] addb []
 addd [] adde []

 anda [] andb []
 andd [] ande []

 bita [] bitb []

 cmpa [] cmpb []
 cpd [] cpe []

 eora [] eorb []
 eord [] eore []

 ldaa [] ldab []
 ldd [] lde []

 oraa [] orab []
 ord [] ore []

 sbca [] sbcb []
 sbcd [] sbce []

 staa [] stab []
 std [] ste []

 suba [] subb []
 subd [] sube []

 AS6816 ASSEMBLER PAGE AP-7
 68HC16 INSTRUCTION SET

 AP.2.8 Index/Stack Register Instructions

 cps [] cpx []
 cpy [] cpz []

 lds [] ldx []
 ldy [] ldz []

 sts [] stx []
 sty [] stz []

 AP.2.9 Jump and Jump to Subroutine Instructions

 jmp bank,[] jsr bank,[]

 AP.2.10 Condition Code Register Instructions

 andp #data orp #data

 AP.2.11 Multiply and Accumulate Instructions

 mac #data rmac #data
 mac #xo,#yo rmac #xo,#yo

 APPENDIX AQ

 AS740 ASSEMBLER

 AQ.1 ACKNOWLEDGMENT

 Thanks to Uwe Steller for his contribution of the AS740 cross
 assembler.

 Uwe Stellar
 Uwe dot Steller at t-online dot de

 The instruction syntax of this cross assembler uses the
 square brackets [] to denote addressing indirection.

 AQ.2 740 REGISTER SET

 The following is a list of the 740 registers used by AS740:

 a - 8-bit accumulator
 x,y - index registers

 AS740 ASSEMBLER PAGE AQ-2
 740 INSTRUCTION SET

 AQ.3 740 INSTRUCTION SET

 The following tables list all 740 family mnemonics recog-
 nized by the AS740 assembler. The designation [] refers to a
 required addressing mode argument. The following list specifies
 the format for each addressing mode supported by AS740:

 #data immediate data byte

 #data,*zp immediate data to zero page

 a accumulator addressing

 *zp zero page addressing
 (see .setdp directive)
 0 <= dir <= 255

 *zp,x zero page x addressing
 *zp,y zero page y addressing
 address = (offset + (x or y))

 [*zp,x] indirect x addressing
 0 <= offset <= 255
 address = 2 bytes at location
 [(offset + (x or y)) mod 256]

 [*zp],y indirect y addressing
 address = 2 byte value at offset
 plus the value of the y register

 abs absolute addressing (2 byte)
 abs,x absolute x addressing (2 byte + x)
 abs,y absolute y addressing (2 byte + y)

 [abs] indirect addressing (2 byte)

 label branch label

 \special low order byte of address 0xFFnn

 BIT#,*zp bit set/clear zero page
 BIT#,A bit set/clear accumulator

 BIT#,*zp,label branch on bit set/clear in zero page
 BIT#,A,label branch on bit set/clear in accumulator

 The terms data, zp, abs, BIT , special, and label may all be ex-
 pressions.

 AS740 ASSEMBLER PAGE AQ-3
 740 INSTRUCTION SET

 Note that not all addressing modes are valid with every in-
 struction, refer to the 740 technical data for valid modes.

 AQ.3.1 Inherent Instructions

 brk clc
 cld cli
 clt clv
 dex dey
 inx iny
 nop pha
 php pla
 plp rti
 rts sec
 sed sei
 set stp
 tax tay
 tsx txa
 txs tya
 wit

 AQ.3.2 Branch Instructions

 bcc label bhs label
 bcs label blo label
 beq label bmi label
 bne label bpl label
 bvc label bvs label
 bra label

 AQ.3.3 Single Operand Instructions

 asl []
 dec []
 inc []
 lsr []
 rol []
 ror []

 AS740 ASSEMBLER PAGE AQ-4
 740 INSTRUCTION SET

 AQ.3.4 Double Operand Instructions

 adc []
 and []
 bit []
 cmp []
 eor []
 lda []
 ora []
 sbc []
 sta []

 AQ.3.5 Jump and Jump to Subroutine Instructions

 jmp [] jsr []

 AQ.3.6 Miscellaneous X and Y Register Instructions

 cpx []
 cpy []
 ldx []
 stx []
 ldy []
 sty []

 AQ.3.7 Bit Instructions

 bit []
 bbc BIT#,[],label bbs BIT#,[],label
 clb BIT#,[] seb BIT#,[]

 AQ.3.8 Other Instructions

 div [] mul []
 ldm #imm,[] com []
 tst [] rrf []

 APPENDIX AR

 AS78K0 ASSEMBLER

 AR.1 PROCESSOR SPECIFIC DIRECTIVES

 AR.1.1 .setdp Directive

 Format:

 .setdp [base [,area]]

 The set direct page directive has a common format in all the as-
 semblers supporting a paged mode. The .setdp directive is used
 to inform the AS78K0 assembler of the current SFR page region
 and the offset address within the selected area. The normal in-
 vocation methods are:

 .area SFR (PAG)
 .setdp

 or

 .setdp 0xFF00,SFR

 The directives specify that the direct page is in area SFR and
 its offset address is 0xFF00 (the only valid value for all r78k0
 microprocessor variations). Be sure to place the SFR area at
 address 0xFF00 during linking. When the base address and area
 are not specified, then 0xFF00 and the current area are the
 defaults. If a .setdp directive is not issued the assembler
 defaults the direct page to the area "CODE" at offset 0xFF00.

 AS78K0 ASSEMBLER PAGE AR-2
 PROCESSOR SPECIFIC DIRECTIVES

 The assembler verifies that any local variable used in an SFR
 variable reference is located in this area. Local variable and
 constant value direct access addresses are checked to be within
 the address range from 0xFF00 to 0xFFFF.

 External SFR references are assumed by the assembler to be in
 the correct area and have valid offsets. The linker will check
 all SFR page relocations to verify that they are within the cor-
 rect area.

 AR.1.2 .xerr Directive

 Format:

 .xerr [n]

 The expanded error directive outputs alternate error messages
 for the <a> error at the commmand line and in the listing files
 created by the assembler. The modes are:

 .xerr [0]

 Restores the default <a> error reporting.

 .xerr 1

 Replaces the <a> error with the <x> error which
 lists the source line containing the error on
 the stdout device.

 .xerr 2

 Replaces the <a> error with the <x> error which
 lists the source line containing the error on
 the stdout device and also outputs an additional
 <x> error describing the detected error.

 .xerr 3

 Replaces the <a> error with the <x> error which
 lists the source line containing the error on
 the stdout device and also outputs an additional
 <x> error describing the detected error. The
 additional <x> error describing the detected
 error is inserted into the optional listing file.

 AS78K0 ASSEMBLER PAGE AR-3
 78K/0 REGISTER SET

 AR.2 78K/0 REGISTER SET

 The following is a list of the 78K/0 registers used by AS78K0:

 x(r0), a(r1), 8-bit registers
 c(r2), b(r3),
 e(r4), d(r5),
 l(r6), h(r7)

 ax(rp0), 16-bit registers
 bc(rp1),
 de(rp2),
 hl(rp3)

 rb0, rb1, register bank selection
 rb2, rb3

 sp Stack pointer
 psw Program status word
 cy Carry flag

 Register names are NOT case sensitive.

 AR.3 78K/0 INSTRUCTION SET

 The following tables list all 78K/0 mnemonics recognized by
 the AS78K0 assembler. The designation [] refers to a required
 addressing mode argument. The first list specifies the format
 for each addressing mode supported by AS78K0:

 addr16 direct addressing
 via a 16-bit address

 !addr16 immediate addressing
 only required for the
 long br instruction

 addr11 direct addressing
 via an 11-bit address

 [addr5] indirect addressing
 via a 5-bit address

 @saddr short direct addressing
 0xFE20 <= saddr <= 0xFF1F

 @saddr.bit short direct addressing

 AS78K0 ASSEMBLER PAGE AR-4
 78K/0 INSTRUCTION SET

 @saddr,bit with bit addressing (0-7)
 0xFE20 <= saddr <= 0xFF1F

 *sfr special function registers
 0xFF00 <= sfr <= 0xFFCF or
 0xFFE0 <= sfr <= 0xFFFF

 *sfr.bit special function registers
 *sfr,bit wiht bit addressing (0-7)
 0xFF00 <= sfr <= 0xFFCF or
 0xFFE0 <= sfr <= 0xFFFF

 label branch label
 (pc relative addressing)

 #byte immediate data (8 bit)
 #word immediate data (16 bit)

 rn registers (8 bit)
 x, a, c, b, e, d, l, h
 r0-r7

 rpn registers (16 bit)
 ax, bc, de, hl
 rp0-rp3

 rbn register bank
 rb0-rb3

 sp stack pointer

 psw program status register

 cy carry flag

 [DE], [HL] register indirect addressing

 [HL+byte] based register indirect addressing
 [HL,byte]
 [HL+B]
 [HL,B]
 [HL+C]
 [HL,C]

 [HL].bit register indirect addressing
 with bit addressing

 AS78K0 ASSEMBLER PAGE AR-5
 78K/0 INSTRUCTION SET

 The terms addr16, addr11, addr5, saddr, sfr, bit, label,
 byte, and word may all be expressions.

 Absolute addresses (CONSTANTS) will be checked as being in
 the 'saddr' range first and then as being in the 'sfr' range if
 no explicit @ or * is specified.

 The bit addressing modes *sfr.bit and @saddr.bit use the '.'
 as a seperator from the address and the bit value. The bit
 value can be a numeric constant, a named constant, an expres-
 sion, or a combination of these. Because the '.' is also a le-
 gal character in a name or label the assembler may not be able
 to resolve the address and bit value. The optional method of
 using a ',' to seperate the address and bit value may be used in
 this case.

 If the 'sfr' or 'saddr' address is external then the user is
 responsible to ensure the addresses are in the proper ranges.
 Paging ERRORS for 'sfr' may be reported by the linker.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 78K/0 technical data for valid modes.

 AR.3.1 Inherent Instructions

 nop halt stop
 ret retb reti
 di ei brk
 adjba adjbs

 AR.3.2 Branch Instructions

 bc label bnc label
 bz label bnz label

 br [] dbnz [],addr16

 bt [],addr16 bf [],addr16
 btclr [],addr16

 AS78K0 ASSEMBLER PAGE AR-6
 78K/0 INSTRUCTION SET

 AR.3.3 Single Operand Instructions

 inc [] dec []
 incw rpn dec rpn

 set1 [] clr1 []

 set1 cy clr1 cy
 not1 cy

 ror4 [HL] rol4 [HL]

 call addr16 callt [addr5]
 callf addr11

 mulu x divuw c

 push [] pop []

 AR.3.4 Double Operand Instructions

 movw sp,ax movw ax,sp
 movw [],[] xchw ax,rpn

 add a,[] add saddr,#byte
 addc a,[] addc saddr,#byte
 sub a,[] sub saddr,#byte
 subc a,[] subc saddr,#byte
 and a,[] and saddr,#byte
 or a,[] or saddr,#byte
 xor a,[] xor saddr,#byte
 cmp a,[] cmp saddr,#byte

 mov1 cy,[] mov1 [],cy
 and1 cy,[] and1 [],cy
 or1 cy,[] or1 [],cy
 xor1 cy,[] xor1 [],cy

 adddw ax,#word subw ax,#word
 cmpw ax,#word

 ror a,1 rol a,1
 rorc a,1 rolc a,1

 APPENDIX AS

 AS78K0S ASSEMBLER

 AS.1 78K/0S REGISTER SET

 The following is a list of the 78K/0S registers used by AS78K0S:

 x(r0), a(r1), 8-bit registers
 c(r2), b(r3),
 e(r4), d(r5),
 l(r6), h(r7)

 ax(rp0), 16-bit registers
 bc(rp1),
 de(rp2),
 hl(rp3)

 sp Stack pointer
 psw Program status word
 cy Carry flag

 Register names are NOT case sensitive.

 AS.2 78K/0S INSTRUCTION SET

 The following tables list all 78K/0S mnemonics recognized by
 the AS78K0S assembler. The designation [] refers to a required
 addressing mode argument. The first list specifies the format
 for each addressing mode supported by AS78K0S:

 addr16 direct addressing
 via 16-bit address

 !addr16 immediate addressing

 AS78K0S ASSEMBLER PAGE AS-2
 78K/0S INSTRUCTION SET

 only required for the
 long br instruction

 @saddr short direct addressing
 0xFE20 <= saddr <= 0xFF1F

 @saddr.bit short direct addressing
 @saddr,bit with bit addressing (0-7)
 0xFE20 <= saddr <= 0xFF1F

 *sfr special function registers
 0xFF00 <= sfr <= 0xFFCF or
 0xFFE0 <= sfr <= 0xFFFF

 *sfr.bit special function registers
 *sfr,bit wiht bit addressing (0-7)
 0xFF00 <= sfr <= 0xFFCF or
 0xFFE0 <= sfr <= 0xFFFF

 label branch label
 (pc relative addressing)

 #byte immediate data (8 bit)
 #word immediate data (16 bit)

 rn registers (8 bit)
 x, a, c, b, e, d, l, h
 r0-r7

 rpn registers (16 bit)
 ax, bc, de, hl
 rp0-rp3

 sp stack pointer

 psw program status register

 cy carry flag

 [DE], [HL] register indirect addressing

 [HL+byte] based register indirect addressing

 The terms addr16, saddr, sfr, bit, label, byte, and word may all
 be expressions.

 Absolute addresses (CONSTANTS) will be checked as being in
 the 'saddr' range first and then as being in the 'sfr' range if
 no explicit @ or * is specified.

 AS78K0S ASSEMBLER PAGE AS-3
 78K/0S INSTRUCTION SET

 The bit addressing modes *sfr.bit and @saddr.bit use the '.'
 as a seperator from the address and the bit value. The bit
 value can be a numeric constant, a named constant, an expres-
 sion, or a combination of these. Because the '.' is also a le-
 gal character in a name or label the assembler may not be able
 to resolve the address and bit value. The optional method of
 using a ',' to seperate the address and bit value may be used in
 this case.

 If the 'sfr' or 'saddr' address is external then the user is
 responsible to ensure the addresses are in the proper ranges.
 NO ERRORS will be reported by the linker.

 Note that not all addressing modes are valid with every in-
 struction, refer to the 78K/0S technical data for valid modes.

 AS.2.1 Inherent Instructions

 nop halt stop
 ret reti
 di ei

 AS.2.2 Branch Instructions

 bc label bnc label
 bz label bnz label

 br [] dbnz [],addr16

 bt [],addr16 bf [],addr16

 AS.2.3 Single Operand Instructions

 inc [] dec []
 incw rpn dec rpn

 set1 [] clr1 []

 set1 cy clr1 cy
 not1 cy

 call addr16 callt []

 push [] pop []

 AS78K0S ASSEMBLER PAGE AS-4
 78K/0S INSTRUCTION SET

 AS.2.4 Double Operand Instructions

 movw sp,ax movw ax,sp
 movw [],[] xchw ax,rpn

 add a,[] add saddr,#byte
 addc a,[] addc saddr,#byte
 sub a,[] sub saddr,#byte
 subc a,[] subc saddr,#byte
 and a,[] and saddr,#byte
 or a,[] or saddr,#byte
 xor a,[] xor saddr,#byte
 cmp a,[] cmp saddr,#byte

 adddw ax,#word subw ax,#word
 cmpw ax,#word

 ror a,1 rol a,1
 rorc a,1 rolc a,1

 APPENDIX AT

 AS8008 ASSEMBLER

 The AS8008 assembler supports the 8008 microprocessor using
 the traditional MCS-8 assembly language syntax.

 AT.1 8008 REGISTER SET

 The following is a list of the 8008 registers used by AS8008:

 a - 8-bit accumulator
 b,c,d,e,h,l - 8-bit registers

 AS8008 ASSEMBLER PAGE AT-2
 8008 REGISTER SET

 AT.2 8008 INSTRUCTION SET

 The following tables list all 8008 mnemonics recognized by
 the AS8008 assembler. The following list specifies the format
 for each addressing mode supported by AS8008:

 Instruction Argument Syntax:

 REGM register a,b,c,d,e,h,l
 or Memory (address is HL)

 SRC REGM source

 DST REGM destination

 #data immediate byte data

 addr call or jump address or label

 port input/output port

 n reset number

 The terms data, addr, port, and n may all be expressions.

 Note that not all addressing modes may be valid with every
 instruction. Refer to the 8008 technical data for valid modes.

 AT.2.1 Instruction Listing

 Single Register Instructions REGM != a or M
 inr REGM dcr REGM

 Mov Instructions SRC and DST not both = M
 mov DST,SRC

 Register or Memory to Accumulator Instructions
 add REGM adc REGM
 sub REGM sbb REGM
 ana REGM xra REGM
 ora REGM cmp REGM

 Rotate Accumulator Instructions
 rlc rrc
 ral rar

 Immediate Instructions

 AS8008 ASSEMBLER PAGE AT-3
 8008 INSTRUCTION SET

 movi REGM,#data
 adi #data aci #data
 sui #data sbi #data
 ani #data xri #data
 ori #data cpi #data

 Jump Instructions
 jmp addr
 jc addr jnc addr
 jz addr jnz addr
 jp addr jm addr
 jpe addr jpo addr

 Call Instructions
 call addr
 cc addr cnc addr
 cz addr cnz addr
 cp addr cm addr
 cpe addr cpo addr

 Return Instructions
 rte
 rc rnc
 rz rnz
 rp rm
 rpe rpo

 Reset Instruction
 rst n 0 <= n <= 7

 Input/Output Instructions
 in port 0 <= port <= 7
 out port 8 <= port <= 31

 Halt and No-Operation Instruction
 hlt
 nop

 APPENDIX AU

 AS8008S ASSEMBLER

 The AS8008S assembler supports the 8008 microprocessor using
 the early MCS-8 assembly language syntax of a Fortan based as-
 sembler/simulator (SIM-8) which had minimal lexical analysis.
 The instruction set contains a mnemonic for every variation of
 the basic instruction types. As an example the load accumulator
 operation has a mnemonic for load a with a (laa), load a with b
 (lab), load a with c (lac), load a with d (lad), load a with e
 (lae), load a with h (lah), and load a with l (lal).

 AU.1 8008 REGISTER SET

 The following is a list of the 8008 registers used by AS8008S:

 a - 8-bit accumulator
 b,c,d,e,h,l - 8-bit registers
 c,z,s,p - status word bits

 AS8008S ASSEMBLER PAGE AU-2
 8008 REGISTER SET

 AU.2 8008 INSTRUCTION SET

 The following tables list all 8008 mnemonics recognized by
 the AS8008S assembler. The following list specifies the format
 for each addressing mode supported by AS8008S:

 Instruction Mnemonic Syntax:

 r register a,b,c,d,e,h,l

 c status bits c,z,s,p

 M memory access

 I immediate access

 Instruction Argument Syntax:

 #data immediate data
 byte or word data

 label call or jump label

 MMM input/output port

 The terms data, label, and MMM may all be expressions.

 Note that not all addressing modes may be valid with every
 instruction. Refer to the 8008 technical data for valid modes.

 AS8008S ASSEMBLER PAGE AU-3
 8008 INSTRUCTION SET

 AU.2.1 Instruction Listing

 Register Instructions
 Lrr
 LrM LMr
 LrI #data LMI #data
 INr DCr

 Accumulator Group
 ADr ACr
 SUr SBr
 NDr XRr
 ORr CPr

 ADM ACM
 SUM SBM
 NDM XRM
 ORM CPM

 ADI #data ACI #data
 SUI #data SBI #data
 NDI #data XRI #data
 ORI #data CPI #data

 Rotate Instructions
 RLC RRC
 RAL RAR

 Progarm Counter and Stack Control Instructions
 JMP label
 JFc label JTc label

 CAL label
 CFc label CTc label

 RET
 RFc RTc

 RST

 Input/Outpu Instructions
 INP MMM OUT MMM

 Machine Instruction
 HLT

 Combo Instruction
 SHL #data (load H and L with word #data)

 APPENDIX AV

 AS8048 ASSEMBLER

 AS8048 supports the 8048, 8041, 8022, and 8021 variations of
 the 8048 microprocessor family.

 AV.1 .8048 DIRECTIVE

 Format:

 .8048

 The .8048 directive enables processing of only the 8048 specific
 mnemonics. 8041/8022/8021 mnemonics encountered will be flagged
 with an <o> error.

 AV.2 .8041 DIRECTIVE

 Format:

 .8041

 The .8041 directive enables processing of the 8041 specific
 mnemonics. 8041 mnemonics encountered without the .8041 direc-
 tive will be flagged with an <o> error.

 AS8048 ASSEMBLER PAGE AV-2
 .8022 DIRECTIVE

 AV.3 .8022 DIRECTIVE

 Format:

 .8022

 The .8022 directive enables processing of the 8022 specific
 mnemonics. 8022 mnemonics encountered without the .8022 direc-
 tive will be flagged with an <o> error.

 AV.4 .8021 DIRECTIVE

 Format:

 .8021

 The .8021 directive enables processing of the 8021 specific
 mnemonics. 8021 mnemonics encountered without the .8021 direc-
 tive will be flagged with an <o> error.

 AV.5 THE .__.CPU. VARIABLE

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the AS8048
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .8048 0
 .8041 1
 .8022 2
 .8021 3

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.

 AS8048 ASSEMBLER PAGE AV-3
 THE .__.CPU. VARIABLE

 The linker will report an error for variables with multiple non
 equal definitions.

 AV.6 8048 REGISTER SET

 The following is a list of the 8048 registers used by AS8048:

 a - 8-bit accumulator
 r0,r1,r2,r3 - 8-bit registers
 r4,r5,r6,r7
 bus,p1,p2 - bus and ports
 p4,p5,p6,p7
 an0,an1 - analog input select
 rb0,rb1 - register bank select
 mb0,mb1 - memory bank select
 c - carry (bit in status word)
 clk - timer
 cnt - counter
 dbb - data bus buffer
 f0 - f0 bit in psw
 f1 - f1 bit in psw
 i - interrupt
 psw - program status word
 t - timer register
 tcnt - timer counter
 tcnti - timer interrupt

 AS8048 ASSEMBLER PAGE AV-4
 8048 REGISTER SET

 AV.7 8048 INSTRUCTION SET

 The following tables list all 8048 mnemonics recognized by
 the AS8048 assembler. The following list specifies the format
 for each addressing mode supported by AS8048:

 #data immediate data
 byte or word data

 r register r0,r1
 rn register r0,r1,r2,r3,r4,r5,r6, or r7

 @r indirect on register r0 or r1
 @a indirect on accumulator

 addr direct memory address
 addr8 current page 8-bit jmp address

 #data immediate data

 pn ports p1 or p2
 port ports p1,p2 or bus
 ep ports p4,p5,p6, or p7

 bus i/o bus

 s f0 or f1 bits in psw
 bitaddr bit address

 label call or jump label

 The terms data, addr, and label may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction. Refer to the 8048, 8041, 8022, and 8021 technical
 data for valid modes.

 AS8048 ASSEMBLER PAGE AV-5
 8048 INSTRUCTION SET

 AV.7.1 Alphabetical Instruction Listing

 8021 8022 8041 8048
 add a,@r x x x x
 add a,#data x x x x
 add a,rn x x x x

 addc a,@r x x x x
 addc a,#data x x x x
 addc a,rn x x x x

 anl port,#data x x
 anl bus,#data x
 anl a,@r x x x x
 anl a,rn x x x x

 anld ep,a x x x x

 call addr x x x x

 clr a x x x x
 clr c x x x x
 clr s x x

 cpl a x x x x
 cpl c x x x x
 cpl s x x

 daa a x x x x

 dec rn x x
 dec a x x x x

 dis tcnti x x
 dis i x x

 djnz rn,addr8 x x x x

 en tcnti x x
 en i x x

 ent0 clk x

 AS8048 ASSEMBLER PAGE AV-6
 8048 INSTRUCTION SET

 8021 8022 8041 8048
 in a,dbb x
 in a,pn x x x x

 inc a x x x x
 inc a,@r x x
 inc rn x x x x

 ins a,bus x

 jmp addr x x x x

 jmpp @a x x x x

 jb0 addr8 x x
 jb1 addr8 x x
 jb2 addr8 x x
 jb3 addr8 x x
 jb4 addr8 x x
 jb5 addr8 x x
 jb6 addr8 x x
 jb7 addr8 x x

 jc addr8 x x x x
 jf0 addr8 x x
 jf1 addr8 x x
 jnc addr8 x x x x
 jni addr8 x
 jnibf addr8 x
 jnt0 addr8 x x
 jnt1 addr8 x x
 jnz addr8 x x x x
 jobf addr8 x
 jtf addr8 x x x x
 jt0 addr8 x x
 jt1 addr8 x x x x
 jz addr8 x x x x

 AS8048 ASSEMBLER PAGE AV-7
 8048 INSTRUCTION SET

 8021 8022 8041 8048
 mov a,#data x x x x
 mov a,psw x x
 mov a,@r x x x x
 mov a,rn x x x x
 mov a,t x x x x
 mov psw,a x x
 mov rn,a x x x x
 mov @r,a x x x x
 mov rn,#data x x x x
 mov @r,#data x x x x
 mov t,a x x x x

 movd a,ep x x x x
 movd ep,a x x x

 movp a,@a x x x x

 movp3 a,@a x x

 movx a,@r x
 movx @r,a x

 nop x x x

 orl a,#data x x x x
 orl a,rn x x x x
 orl a,@r x x x x
 orl bus,#data x
 orl port,#data x x

 orld ep,a x x x x

 out dbb,a x

 outl bus,a x
 outl port,a x x x x

 rad a x

 ret x x x x

 retr x x

 AS8048 ASSEMBLER PAGE AV-8
 8048 INSTRUCTION SET

 8021 8022 8041 8048
 rl a x x x x

 rlc a x x x x

 rr a x x x x

 rrc a x x x x

 sel an0 x
 sel an1 x
 sel mb0 x
 sel mb1 x
 sel rb0 x
 sel rb1 x

 swap a x x x x

 stop tcnt x x x x
 strt cnt x x x x
 strt t x x x x

 xch a,@r x x x x

 xchd a,@r x x x x

 xrl a,@r x x x x

 xrl a,#data x x x x

 xch a,rn x x x x

 xrl a,rn x x x x

 APPENDIX AW

 AS8051 ASSEMBLER

 AW.1 ACKNOWLEDGMENT

 Thanks to John Hartman for his contribution of the AS8051
 cross assembler.

 John L. Hartman
 jhartman at compuserve dot com
 noice at noicedebugger dot com

 AW.2 8051 REGISTER SET

 The following is a list of the 8051 registers used by AS8051:

 a,b - 8-bit accumulators
 r0,r1,r2,r3 - 8-bit registers
 r4,r5,r6,r7
 dptr - data pointer
 sp - stack pointer
 pc - program counter
 psw - status word
 c - carry (bit in status word)

 AS8051 ASSEMBLER PAGE AW-2
 8051 REGISTER SET

 AW.3 8051 INSTRUCTION SET

 The following tables list all 8051 mnemonics recognized by
 the AS8051 assembler. The following list specifies the format
 for each addressing mode supported by AS8051:

 #data immediate data
 byte or word data

 r,r1,r2 register r0,r1,r2,r3,r4,r5,r6, or r7

 @r indirect on register r0 or r1
 @dptr indirect on data pointer
 @a+dptr indirect on accumulator
 plus data pointer
 @a+pc indirect on accumulator
 plus program counter

 addr direct memory address

 bitaddr bit address

 label call or jump label

 The terms data, addr, bitaddr, and label may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction. Refer to the 8051 technical data for valid modes.

 AW.3.1 Inherent Instructions

 nop

 AS8051 ASSEMBLER PAGE AW-3
 8051 INSTRUCTION SET

 AW.3.2 Move Instructions

 mov a,#data mov a,addr
 mov a,r mov a,@r

 mov r,#data mov r,addr
 mov r,a

 mov addr,a mov addr,#data
 mov addr,r mov addr,@r
 mov addr1,addr2 mov bitaddr,c

 mov @r,#data mov @r,addr
 mov @r,a

 mov c,bitaddr
 mov dptr,#data

 movc a,@a+dptr movc a,@a+pc
 movx a,@dptr movx a,@r
 movx @dptr,a movx @r,a

 AW.3.3 Single Operand Instructions

 clr a clr c
 clr bitaddr
 cpl a cpl c
 cpl bitaddr
 setb c setb bitaddr

 da a
 rr a rrc a
 rl a rlc a
 swap a

 dec a dec r
 dec @r
 inc a inc r
 inc dptr inc @r

 div ab mul ab

 pop addr push addr

 AS8051 ASSEMBLER PAGE AW-4
 8051 INSTRUCTION SET

 AW.3.4 Two Operand Instructions

 add a,#data add a,addr
 add a,r add a,@r
 addc a,#data addc a,addr
 addc a,r addc a,@r
 subb a,#data subb a,addr
 subb a,r subb a,@r
 orl a,#data orl a,addr
 orl a,r orl a,@r
 orl addr,a orl addr,#data
 orl c,bitaddr orl c,/bitaddr
 anl a,#data anl a,addr
 anl a,r anl a,@r
 anl addr,a anl addr,#data
 anl c,bitaddr anl c,/bitaddr
 xrl a,#data xrl a,addr
 xrl a,r xrl a,@r
 xrl addr,a xrl addr,#data
 xrl c,bitaddr xrl c,/bitaddr
 xch a,addr xch a,r
 xch a,@r xchd a,@r

 AW.3.5 Call and Return Instructions

 acall label lcall label
 ret reti
 in data
 out data
 rst data

 AW.3.6 Jump Instructions

 ajmp label
 cjne a,#data,label cjne a,addr,label
 cjne r,#data,label cjne @r,#data,label
 djnz r,label djnz addr,label
 jbc bitadr,label
 jb bitadr,label jnb bitadr,label
 jc label jnc label
 jz label jnz label
 jmp @a+dptr
 ljmp label sjmp label

 AS8051 ASSEMBLER PAGE AW-5
 8051 INSTRUCTION SET

 AW.3.7 Predefined Symbols: SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 FC FF
 F8 FB
 F4 F7
 F0 B F3
 EC EF
 E8 EB
 E4 E7
 E0 ACC E3
 DC DF
 D8 DB
 D4 D7
 D0 PSW D3
 CC [TL2 TH2] CF
 C8 [T2CON RCAP2L RCAP2H] CB
 C4 C7
 C0 C3
 BC BF
 B8 IP BB
 B4 B7
 B0 P3 B3
 AC AF
 A8 IE AB
 A4 A7
 A0 P2 A3
 9C 9F
 98 SCON SBUF 9B
 94 97
 90 P1 93
 8C TH0 TH1 8F
 88 TCON TMOD TL0 TL1 8B
 84 PCON 87
 80 P0 SP DPL DPH 83

 [...] Indicates Resident in 8052, not 8051
 A is an allowed alternate for ACC.

 AS8051 ASSEMBLER PAGE AW-6
 8051 INSTRUCTION SET

 AW.3.8 Predefined Symbols: SFR Bit Addresses

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 FC FF
 F8 FB
 F4 B.4 B.5 B.6 B.7 F7
 F0 B.0 B.1 B.2 B.3 F3
 EC EF
 E8 EB
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 DC DF
 D8 DB
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 CC [T2CON.4 T2CON.5 T2CON.6 T2CON.7] CF
 C8 [T2CON.0 T2CON.1 T2CON.2 T2CON.3] CB
 C4 C7
 C0 C3
 BC IP.4 IP.5 IP.6 IP.7 BF
 B8 IP.0 IP.1 IP.2 IP.3 BB
 B4 P3.4 P3.5 P3.6 P3.7 B7
 B0 P3.0 P3.1 P3.2 P3.3 B3
 AC IE.4 IE.5 EI.6 IE.7 AF
 A8 IE.0 IE.1 IE.2 IE.3 AB
 A4 P2.4 P2.5 P2.6 P2.7 A7
 A0 P2.0 P2.1 P2.2 P2.3 A3
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F
 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 94 P1.4 P1.5 P1.6 P1.7 97
 90 P1.0 P1.1 P1.2 P1.3 93
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 84 P0.4 P0.5 P0.6 P0.7 87
 80 P0.0 P0.1 P0.2 P0.3 83

 [...] Indicates Resident in 8052, not 8051
 A is an allowed alternate for ACC.

 AS8051 ASSEMBLER PAGE AW-7
 8051 INSTRUCTION SET

 AW.3.9 Predefined Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 FC FF
 F8 FB
 F4 F7
 F0 F3
 EC EF
 E8 EB
 E4 E7
 E0 E3
 DC DF
 D8 DB
 D4 RS1 F0 AC CY D7
 D0 P OV RS0 D3
 CC [TLCK RCLK EXF2 TF2] CF
 C8 [CPRL2 CT2 TR2 EXEN2] CB
 C4 C7
 C0 C3
 BC PS PT2 BF
 B8 PX0 PT0 PX1 PT1 BB
 B4 B7
 B0 RXD TXD INT0 INT1 B3
 AC ES ET2 EA AF
 A8 EX0 ET0 EX1 ET1 AB
 A4 A7
 A0 A3
 9C REN SM2 SM1 SM0 9F
 98 RI TI RB8 TB8 9B
 94 97
 90 93
 8C TR0 TF0 TR1 TF1 8F
 88 IT0 IE0 IT1 IE1 8B
 84 87
 80 83

 [...] Indicates Resident in 8052, not 8051

 APPENDIX AX

 AS8085 ASSEMBLER

 AX.1 8085 REGISTER SET

 The following is a list of the 8080/8085 registers used by
 AS8085:

 a,b,c,d,e,h,l - 8-bit accumulators
 m - memory through (hl)
 sp - stack pointer
 psw - status word

 AX.2 8085 INSTRUCTION SET

 The following tables list all 8080/8085 mnemonics recognized
 by the AS8085 assembler. The following list specifies the
 format for each addressing mode supported by AS8085:

 #data immediate data
 byte or word data

 r,r1,r2 register or register pair
 psw,a,b,c,d,e,h,l
 bc,de,hl,sp,pc

 m memory address using (hl)

 addr direct memory addressing

 label call or jump label

 The terms data, m, addr, and label may be expressions.

 AS8085 ASSEMBLER PAGE AX-2
 8085 INSTRUCTION SET

 Note that not all addressing modes are valid with every in-
 struction, refer to the 8080/8085 technical data for valid
 modes.

 AX.2.1 Inherent Instructions

 cma cmc
 daa di
 ei hlt
 nop pchl
 ral rar
 ret rim
 rrc rlc
 sim sphl
 stc xchg
 xthl

 AX.2.2 Register/Memory/Immediate Instructions

 adc r adc m aci #data
 add r add m adi #data
 ana r ana m ani #data
 cmp r cmp m cpi #data
 ora r ora m ori #data
 sbb r sbb m sbi #data
 sub r sub m sui #data
 xra r xra m xri #data

 AX.2.3 Call and Return Instructions

 cc label rc
 cm label rm
 cnc label rnc
 cnz label rnz
 cp label rp
 cpe label rpe
 cpo label rpo
 cz label rz
 call label

 AS8085 ASSEMBLER PAGE AX-3
 8085 INSTRUCTION SET

 AX.2.4 Jump Instructions

 jc label
 jm label
 jnc label
 jnz label
 jp label
 jpe label
 jpo label
 jz label
 jmp label

 AX.2.5 Input/Output/Reset Instructions

 in data
 out data
 rst data

 AX.2.6 Move Instructions

 mov r1,r2
 mov r,m
 mov m,r

 mvi r,#data
 mvi m,#data

 AX.2.7 Other Instructions

 dcr r dcr m
 inr r inr m

 dad r dcx r
 inx r ldax r
 pop r push r
 stax r

 lda addr lhld addr
 shld addr sta addr

 lxi r,#data

 AS8085 ASSEMBLER PAGE AX-4
 8085 INSTRUCTION SET

 AX.2.8 Unspecified Instructions

 arhl
 dsub

 jnx5 addr
 jx5 addr

 ldhi #data
 ldsi #data

 lhlx
 rdel
 rstv
 shlx

 AS8085 ASSEMBLER PAGE AX-5
 8085 INSTRUCTION SET

 AX.3 UNSPECIFIED OPCODE ARTICLE

 Engineer's Notebook,
 "Electronics" magazine, 1980

 Unspecified 8085 Op Codes Enhance Programming

 by Wolfgang Dehnhardt and Villy M. Sorenson
 GSI, Dermstat, and Sorenson Software,
 Seeheim, West Germany

 Ten operating codes and two flag bits previously unknown to
 most users of the 8085 microprocessor will enable programmers to
 write more efficient routines. The new members of the instruc-
 tion set, which were stumbled upon during the testing of an
 assembler-disassembler module, include seven opcodes that in-
 volve the processing of register pairs, two that involve jump
 operations with one new flag, and one that performs a condi-
 tional restart on the overflow indication of the other flag bit.

 The seven register pair instructions (all with 16-bit
 operands) consist of a double subtraction, a rotate, a shift,
 indirect loading and storing of a word, and two offset opera-
 tions. Either BC, DE, HL, or SP are the designated register
 pairs used in these opcodes.

 The mnemonic names of the instructions have been selected to
 be compatible with the 8085's existing mnemonics. In the double
 subtraction (DSUB), register pair BC is subtracted from HL.
 This instruction thus performs the opposite task of DAD B, a
 well-known instruction. The instruction RDEL rotates register
 pair DE left 1 bit through the carry. ARHL is an arithmetic
 shift to the right of HL. It serves to divide HL by 2, except
 in cases where HL is -1.

 All 16 bits of register pair HL can be stored indirectly at
 the address contained in the DE pair by specifying instruction
 SHLX. To load HL, LHLX must be employed.

 AS8085 ASSEMBLER PAGE AX-6
 UNSPECIFIED OPCODE ARTICLE

 As an example of how this instruction can be used to cut in-
 struction steps, consider the common sequence used for a routine
 table jump shown in part (a) of the figure. By assigning the
 register DE for HL and using the LHLX instruction, this sequence
 can be replaced by the much simpler arrangement shown at the
 bottom of part (a).

 As for adding the contents of register pairs with an addi-
 tional byte (offset), DE can be loaded with HL plus the byte by
 selecting the instruction LDHI, which simplifies array address-
 ing. Usually, the architecture of the 8080-type systems dictate
 addressing of arrays in what are called pages of 256 bytes.
 This restriction means that the starting address of an array
 must be placed near the beginning of a page. A typical call is
 shown in part (b) of the figure.

 The page limitation is by passed using th LDHI instruction
 code and constant indexes. The starting address of the array
 can now be placed anywhere, and addressing occurs as shown at
 the bottom of part (b).

 An additional byte can be combined with register pair SP in
 DE if instruction LDSI is specified. This instruction is
 designed for operating system routines that transfer arguments
 on the stack. An example sequence, shown in (c), stores HL into
 a 16-bit word located as the second item below the top of the
 stack.

 The jump and restart instructions work in conjunction with
 the two discoverd flag bits, X5 and V. Op codes JX5 and JNX5
 jump depending on the state of th X5 flag. Op code RSTV makes a
 restart call to hexidecimal address 40 if the V flag is set;
 otherwise it functions as a no-operation instruction.

 Flag bit V indicates a 2's complement overflow condition for
 8- and 16-bit arithmetic operations. Flag bit X5 has been named
 for its position in the condition code byte and not for its
 function. It does not resemble any normal flag bit. The only
 use for this bit found thus far are as an unsigned overflow in-
 dicator resulting from a data change of FFFF to 0000 on execut-
 ing DCX.

 AS8085 ASSEMBLER PAGE AX-7
 UNSPECIFIED OPCODE ARTICLE

 The new 8085 instructions are outlined in the table.

 --|
 | part (a) |
 | |---| | |
 | | Sourec Statement | Comment | |
 | |---| |
 | | MOV E,M | ;Routine ADR Low Byte | |
 | | INX H | ;HL = Table ADR | |
 | | MOV D,M | ;Routine ADR High Byte | |
 | | XCHG | ;DE = Routine ADR | |
 | | PCHL | ;Go to Routine ADR | |
 | |---- ----| |
 | || |
 | \/ |
 | |---- ----| | |
 | | LHLX | ;DE = Table ADR | |
 | | PCHL | ;HL = Routine ADR | |
 | |---| |
 | part (b) |
 | |---| | |
 | | Sourec Statement | Comment | |
 | |---| |
 | | LXI H,ARRAY | ;ARRAY Base ADR | |
 | | MVI L,INDEX | ;8-Bit INDEX, HL=ARRAY ADR | |
 | |---- ----| |
 | || |
 | \/ |
 | |---- ----| | |
 | | LXI H,ARRAY | ;ARRAY Base ADR | |
 | | LDHI L,INDEX | ;8-Bit INDEX, HL=ARRAY ADR | |
 | |---| |
 | part (c) |
 | |---| | |
 | | Sourec Statement | Comment | |
 | |---| |
 | | LDSI 2 | ;DE = SP + 2 | |
 | | SHLX | ;Replace 2, Item on Stack | |
 | |---| |
 | |
 | Options. Newly discovered operating codes for |
 | 8085 shown in table enables the writing of more |
 | efficient programs. Program for table jump (a, top) |
 | can be reduced significantly when new instructions |
 | (a, bottom) are implemented. Array routine (b, top) |
 | can be rewritten (b, Bottom) so that arrays can be |
 | addressed across page boundaries. Data words can |
 | be entered at any point in a stack register (c). |
 --|

 AS8085 ASSEMBLER PAGE AX-8
 UNSPECIFIED OPCODE ARTICLE

 Table:

 | Condition Code Format |

 | S Z X5 AC O P V CY |

 New Condition Codes:

 V = Bit 1 2's complement overflow
 X5 = bit 5 Underflow (DCX) or Overflow (INX)
 X5 = O1*O2 + O1*R + O2*R, where
 * == AND, + == OR
 O1 = sign of operand 1
 O2 = sign of operand 2
 R = sign of result.
 For subtraction and comparisons
 replace O2 with ~O2.

 DSUB (double subtraction)

 (H)(L)=(H)(L)-(B)(C)
 The contents of register pair B and C are subtracted
 from the contents of register pair H and L. The
 result is placed in register pair H and L. All
 condition flags are affected.

 [0 0 0 0 1 0 0 0] (08)

 cycles: 3
 states: 10
 addressing: register
 flags: Z,S,P,CY,AC,X5,V

 AS8085 ASSEMBLER PAGE AX-9
 UNSPECIFIED OPCODE ARTICLE

 ARHL (arithmetic shift of H and L to the right)

 (H7=H7);(Hn-1)=(Hn)
 (L7=H0);(Ln-1)=(Ln);(CY)=(L0)
 The contents of register pair H and L are shifted
 right one bit. The uppermost bit is duplicated and
 the lowest bit is shifted into the carry bit.
 The result is placed in register pair H and L.
 Note: only the CY flag is affected.

 [0 0 0 1 0 0 0 0] (10)

 cycles: 3
 states: 7
 addressing: register
 flags: CY

 RDEL (rotate D and E left through carry)

 (Dn+1)=(Dn);(D0)=(E7)
 (CY)=(D7);(En+1)=(En);(E0)=(CY)
 The contents of register pair D and E are rotated
 left one position through the carry flag. The low
 order bit is set equal to the CY flag and the CY
 flag is set to the value shifted out of the
 high-order bit. Only the CY and V flags are
 affected.

 [0 0 0 1 1 0 0 0] (18)

 cycles: 3
 states: 10
 addressing: register
 flags: CY, V

 AS8085 ASSEMBLER PAGE AX-10
 UNSPECIFIED OPCODE ARTICLE

 LDHI (load D and E with H and L plus immediate byte)

 (D)(E)=((H)(L)+(byte 2)
 The contents of register pair H and L are added to
 the immediate byte. The result is placed in
 register pair D and E.
 Note: no condition flags are affected.

 [0 0 1 0 1 0 0 0] (28)

 [data]

 cycles: 3
 states: 10
 addressing: immediate register
 flags: none

 LDSI (load D and E with SP plus immediate bytey)

 (D)(E);(D0)=(E7)
 (CY)=(D7);(SPH)(SPL)+(byte 2)
 The contents of register pair H and L are added to
 the immediate byte. The result is placed in
 register pair D and E.
 Note: no condition flags are affected.

 [0 0 1 1 1 0 0 0] (38)

 [data]

 cycles: 3
 states: 10
 addressing: immediate register
 flags: none

 AS8085 ASSEMBLER PAGE AX-11
 UNSPECIFIED OPCODE ARTICLE

 RSTV (restart on overflow)

 if (V):
 ((SP)-1))=(PCH)
 ((SP)-2))=(PCL)
 (SP)=(SP)-2
 (PC)=40 hex
 If the overflow flag V is set, the actions
 specified above are performed; otherwise
 control continues sequentially.

 [1 1 0 0 1 0 1 1] (CB)

 cycles: 1 or 3
 states: 6 or 12
 addressing: register indirect
 flags: none

 SHLX (store H and L indirect through D and E)

 ((D)(E))=(L)
 ((D)(E)+1)=(H)
 The contents of register L are moved to the
 memory-location whose address is in register pair
 D and E. The contents of register H are moved to
 the succeeding memory location.

 [1 1 0 1 1 0 0 1] (D9)

 cycles: 3
 states: 10
 addressing: register indirect
 flags: none

 AS8085 ASSEMBLER PAGE AX-12
 UNSPECIFIED OPCODE ARTICLE

 JNX5 (jump on not X5)

 if (not X5)
 (PC)=(byte 3)(byte 2)

 If the X5 flag is reset, control is transferred to
 the instruction whose address is specified in byte
 3 and byte 2 of the current instruction; otherwise
 control continues sequentially.

 [1 1 0 1 1 1 0 1] (DD)

 [lo-order address]

 [hi-order address]

 cycles: 2 or 3
 states: 7 or 10
 addressing: immediate
 flags: none

 LHLX (load H and L indirect through D and E))

 (L)=((D)(E))
 (H)=((D)(E)+1)
 The content of the memory location whose address
 is in D and E, are moved to register L. The
 contents of the succeeding memory location are
 moved to register H.

 [1 1 1 0 1 1 0 1] (ED)

 cycles: 3
 states: 10
 addressing: register indirect
 flags: none

 AS8085 ASSEMBLER PAGE AX-13
 UNSPECIFIED OPCODE ARTICLE

 JX5 (jump on X5)

 if (X5)
 (PC)=(byte 3)(byte 2)

 If the X5 flag is set, control is transferred to
 the instruction whose address is specified in byte
 3 and byte 2 of the current instruction; otherwise
 control continues sequentially.

 [1 1 1 1 1 1 0 1] (FD)

 [lo-order address]

 [hi-order address]

 cycles: 2 or 3
 states: 7 or 10
 addressing: immediate
 flags: none

 APPENDIX AY

 AS8X300 ASSEMBLER

 The AS8X300 assembler supports the 8X300 and 8X305 microcon-
 trollers with the basic syntax of the MCCAP Microcontroller
 Cross Assembler Program. The 8x300 microcontroller has just
 eight basic instructions, MOVE, ADD, AND, XOR, XMIT, NZT, XEC,
 and JMP. The 8x305 has two addition instruction mnemonics, XML
 and XMR. Three additional mnemonics are common to the 8X300 and
 8X305, HALT, NOP, and SEL. These five instructions are derived
 from the basic instructions.

 The CALL and RTN functionalities are provided by macros con-
 tained in the s8xmcros.asm macro library. These functions and
 others in the library will be discussed in the following sec-
 tions.

 AY.1 PROCESSOR SPECIFIC DIRECTIVES

 AY.1.1 .8x300 Directive

 Format:

 .8x300

 The default microcontroller selection is the 8x300. The .8x300
 directive explicitly selects coding for the 8x300 microcon-
 troller.

 AS8X300 ASSEMBLER PAGE AY-2
 PROCESSOR SPECIFIC DIRECTIVES

 AY.1.2 .8x305 Directive

 Format:

 .8x305

 The default microcontroller selection is the 8x300. The .8x305
 directive explicitly selects coding for the 8x305 microcon-
 troller.

 AY.1.3 .liv Directive

 Format:

 .liv sym byte,bit,length

 The .liv declaration assigns a symbolic name to a left bank data
 field and defines the address (byte), position (bit), and preci-
 sion (length) of that variable.

 AY.1.4 .riv Directive

 Format:

 .riv sym byte,bit,length

 The .riv declaration assigns a symbolic name to a right bank
 data field and defines the address (byte), position (bit), and
 precision (length) of that variable.

 AY.1.5 .fdef Directive

 Format:

 .fdef n(v),n(v),...

 The .fdef directive is used to specify operand fields and
 default values for instruction extensions. The fields define
 output bit positions from MSB to LSB. The directive may define
 up to 16 fields with a total length of 16 bits. The length in
 bits (n) of each field is specified along with the an optional
 default field value (v) and an error checking flag (- preceeding
 n inhibits error checking).

 AS8X300 ASSEMBLER PAGE AY-3
 PROCESSOR SPECIFIC DIRECTIVES

 AY.1.6 .xtnd Directive

 Format:

 .xtnd [area]

 The option to output instruction extension code requires the de-
 finition of an extension field by .fdef and the invocation of
 .xtnd with a defined area. The generated extension code will be
 placed in the extended code area with the same address as the
 assembled instruction. Invoking the .xtnd directive without an
 area will disable the extension code output.

 AY.1.7 .xerr Directive

 Format:

 .xerr [n]

 The expanded error directive outputs alternate error messages
 for the <a> error at the commmand line and in the listing files
 created by the assembler. The modes are:

 .xerr [0]

 Restores the default <a> error reporting.

 .xerr 1

 Replaces the <a> error with the <x> error which
 lists the source line containing the error on
 the stdout device.

 .xerr 2

 Replaces the <a> error with the <x> error which
 lists the source line containing the error on
 the stdout device and also outputs an additional
 <x> error describing the detected error.

 .xerr 3

 Replaces the <a> error with the <x> error which
 lists the source line containing the error on
 the stdout device and also outputs an additional
 <x> error describing the detected error. The
 additional <x> error describing the detected

 AS8X300 ASSEMBLER PAGE AY-4
 PROCESSOR SPECIFIC DIRECTIVES

 error is inserted into the optional listing file.

 AY.2 THE 8X300/8X305 MACRO LIBRARY

 The macro library, s8xmcros.asm, contains macros defining
 functionality not implemented directly into the assembler.

 The macros are:

 ORG space, pgsize ^/[...]/

 PROC sub
 ENTRY sub

 CALL sub ^/[...]/
 RTN ^/[...]/

 CALL_TABLE area_c, area_x ^/[...]/

 Where the ^/[...]/ syntax passes the string "[...]" as an argu-
 ment of the macro.

 AY.2.1 ORG

 Format:

 ORG space, pgsize ^/[...]/

 The ORG macro changes the value of the location counter either
 conditionally or unconditionally. The first form of the ORG
 macro:

 ORG address

 unconditionally changes the value of the location counter to the
 value indicated by "address" which is any constant, symbol or
 expression which evaluates to a value between 1 and 8191.

 The second form of the ORG macro conditionally sets the loca-
 tion counter to the next page or segment boundary if there are
 insufficient locations (space) in the current page (pgsize = 32)
 or segment (pgsize = 256). If there is insufficient space then
 a jump instruction is inserted pointing to the next page/segment
 boundary.

 AS8X300 ASSEMBLER PAGE AY-5
 THE 8X300/8X305 MACRO LIBRARY

 ORG space, pgsize ^/[...]/

 The optional extended code, [...], will be output if the jump
 instruction is inserted.

 If "space" is equal to "pgsize", this statement is an uncon-
 ditional alignment to the next boundary of length "pgsize".

 AY.2.2 PROC

 Format:

 PROC sub

 The PROC macro creates the following code:

 .sbttl sub:
 sub:

 AY.2.3 ENTRY

 Format:

 ENTRY sub

 The ENTRY macro creates the following code:

 sub:

 AY.2.4 CALL, RTN, and CALL_TABLE

 The macro functions CALL, RTN, and CALL_TABLE implement a
 subroutine calling convention. The 8X300/8X305 microcontrollers
 donot have a stack to save the return addresses for subroutine
 calling or subroutine returns. The subroutine calling conven-
 tion uses register r11 as an index into a table of return jump
 addresses created by cooperation between the CALL macro and the
 CALL_TABLE macro. The CALL macro creates a unique return ad-
 dress symbol each time the macro is invoked. The CALL_TABLE
 macro creates the return jump table which is appended to the end
 of the assembled code.

 AS8X300 ASSEMBLER PAGE AY-6
 THE 8X300/8X305 MACRO LIBRARY

 Format:

 CALL sub ^/[...]/

 The CALL macro creates the following code:

 xmit n,r11 [...]
 jmp sub [...]

 and a symbol, .rtn.n which points to the instruction following
 the inserted code, where n is 0 for the first CALL invocation
 and is incremented by 1 for each successive CALL invocation.
 The extended instruction code, [...], is optional.

 Format:

 RTN ^/[...]/

 The RTN macro creates the following code:

 jmp .tbgn. [...]

 where .tbgn. is a label created by the macro CALL_TABLE when
 invoked at the end of the assembly. The table return index,
 r11, will select the proper return jump address entry from the
 jump table created by the CALL_TABLE macro. The extended in-
 struction code, [...], is optional.

 Format:

 CALL_TABLE area_c,area_x ^/[...]/

 'area_c' specifies the code area where the return jump table is
 to be placed. 'area_x' specifies the code area where the exten-
 sion data is to be placed. CALL_TABLE can be invoked with no
 arguments to use the current code and extension areas and the
 default extended code. To create an empty argument use the con-
 struct ^// for the argument.

 The CALL_TABLE macro creates an entry for each CALL macro in-
 voked in the assembly program and produces the following code:

 xec .+1(r11) [...]
 jmp .rtn.0 [...]
 jmp .rtn.1 [...]
 jmp .rtn.2 [...]
 ... repeating for the
 total number of CALLs

 AS8X300 ASSEMBLER PAGE AY-7
 8X300 AND 8X305 REGISTER SETS

 AY.3 8X300 AND 8X305 REGISTER SETS

 The following is a list of the 8X300 and 8X305 registers used by
 AS8X300:

 Registers Common To The 8X300 and 8X305
 r0,r1,r2,r3 - 8-bit registers
 r4,r5,r6,r7
 r10,r11
 aux (= r0)
 ivl (= r7)
 ovf (= r10)
 ivr (= r17)

 Additional Registers Of The 8X305
 r12,r13,r14, - 8-bit registers
 r15,r16

 Register names containing multiple letters
 must be all lower case or all upper case.

 AS8X300 ASSEMBLER PAGE AY-8
 8X300 AND 8X305 REGISTER SETS

 AY.4 8X300 AND 8X305 INSTRUCTION SETS

 The following tables list all 8X300 and 8X305 mnemonics
 recognized by the AS8X300 assembler. The following list speci-
 fies the format for each addressing mode supported by AS8X300:

 Instruction Argument Syntax:

 op instruction mnemonic

 reg 8X300/8X305 registers

 s source I/O data feild
 register, .liv or .riv symbol, or constant

 d desination I/O data feild
 register, .liv or .riv symbol, or constant

 exp8 8-bit value

 exp5 5-bit value

 df I/O data field (may be optional)

 len I/O field length (may be optional)

 r bit positions to rotate (may be optional)

 addr call or jump address or label

 code extension field patterns (optional)

 The terms reg, s, r, exp8, exp5, df, len, addr, and code may all
 be expressions.

 Note that not all addressing modes may be valid with every
 instruction. Refer to the 8X300/8X305 technical data for valid
 modes.

 AS8X300 ASSEMBLER PAGE AY-9
 8X300 AND 8X305 INSTRUCTION SETS

 AY.4.1 Instruction Listing

 Basic 8X300 and 8X305 Instructions
 MOVE, ADD, AND, XOR - Data Manipulation
 op s,d [code]
 op s(r),d [code]
 op s,len,d [code]

 XMIT - Load Immediate
 XMIT exp8,reg [code]
 XMIT exp5,df,len [code]

 XDEF - Execute
 XEC exp8(reg),size [code]
 XEC exp5(df,len),size [code]

 NZT - Non-Zero Transfer
 NZT reg,exp8 [code]
 NZT df,len,exp5 [code]

 JMP - Unconditional Jump
 JMP addr [code]

 Aditional 8X305 Instructions
 XML, XMR - Load Immediate To Left Or Right Bank
 op immed [code]

 Common Derived Instructions
 SEL, HALT, NOP - Derived Instructions
 SEL df [code]
 HALT [code]
 NOP [code]

 APPENDIX AZ

 AS8XCXXX ASSEMBLER

 AZ.1 ACKNOWLEDGMENTS

 Thanks to Bill McKinnon for his contributions to the AS8XCXXX
 cross assembler.

 Bill McKinnon
 w_mckinnon at conknet dot com

 This assembler was derived from the AS8051 cross assembler
 contributed by John Hartman.

 John L. Hartman
 jhartman at compuserve dot com
 noice at noicedebugger dot com

 AZ.2 AS8XCXXX ASSEMBLER DIRECTIVES

 AZ.2.1 Processor Selection Directives

 The AS8XCXXX assembler contains directives to specify the
 processor core SFR (Special Function Registers) and enable the
 SFR Bit Register values during the assembly process. The fol-
 lowing directives are supported:

 .DS8XCXXX ;80C32 core
 .DS80C310 ;Dallas Semiconductor
 .DS80C320 ;Microprocessors
 .DS80C323

 AS8XCXXX ASSEMBLER PAGE AZ-2
 AS8XCXXX ASSEMBLER DIRECTIVES

 .DS80C390
 .DS83C520
 .DS83C530
 .DS83C550
 .DS87C520
 .DS87C530
 .DS87C550

 The invocation of one of the processor directives creates a pro-
 cessor specific symbol and an SFR-Bits symbol. For example the
 directive

 .DS80C390

 creates the global symbols '__DS80C390' and '__SFR_BITS' each
 with a value of 1. If the microprocessor core selection direc-
 tive is followed by an optional argument then the symbol
 '__SFR_BITS' is given the value of the argument. The file
 DS8XCXXX.SFR contains the SFR and SFR register bit values for
 all the microprocessor selector directives. This file may be
 modified to create a new SFR for other microprocessor types.

 If a microprocessor selection directive is not specified then
 no processor symbols will be defined. This mode allows the SFR
 and SFR register bit values to be defined by the assembly source
 file.

 AZ.2.2 .cpu Directive

 The .cpu directive is similar to the processor selection
 directives. This directive defines a new processor type and
 creates a user defined symbol:

 .cpu "CP84C331" 2

 creates the symbol '__CP84C331' with a value of 1 and the
 symbol '__SFR_BITS' with a value of 2. These values can be used
 to select the processor SFR and SFR register bits from an in-
 clude file. If the optional final argument, 2, is omitted then
 the value of the symbol '__SFR_BITS' is 1.

 AS8XCXXX ASSEMBLER PAGE AZ-3
 AS8XCXXX ASSEMBLER DIRECTIVES

 AZ.2.3 Processor Addressing Range Directives

 If one of the .DS8... microprocessor selection directives is
 not specified then the following address range assembler direc-
 tives are accepted:

 .16bit ;16-Bit Addressing
 .24bit ;24-Bit Addressing
 .32bit ;32-Bit Addressing

 These directives specify the assembler addressing space and ef-
 fect the output format for the .lst, .sym, and .rel files.

 The default addressing space for defined microprocessors is
 16-Bit except for the DS80C390 microprocessor which is 24-Bit.

 The .cpu directive defaults to the 16-Bit addressing range
 but this can be changed using these directives.

 AZ.2.4 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the AS8XCXXX
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .cpu 0

 .DS8XCXXX 1
 .DS80C310 2
 .DS80C320 3
 .DS80C323 4
 .DS80C390 5
 .DS83C520 6
 .DS83C530 7
 .DS83C550 8
 .DS87C520 9
 .DS87C530 10
 .DS87C550 11

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler

 AS8XCXXX ASSEMBLER PAGE AZ-4
 AS8XCXXX ASSEMBLER DIRECTIVES

 command line options -g or -a will not cause the local symbol to
 be output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 AZ.2.5 DS80C390 Addressing Mode Directive

 The DS80C390 microprocessor supports 16-Bit and 24-Bit ad-
 dressing modes. The .amode assembler directive provides a
 method to select the addressing mode used by the ajmp, acall,
 ljmp, and lcall instructions. These four instructions support
 16 and 24 bit addressing modes selected by bits AM0 and AM1 in
 the ACON register. The assembler is 'informed' about the ad-
 dressing mode selected by using the .amode directive:

 .amode 2 ;mode 2 is 24-bit addressing

 If a second argument is specified and its value is non-zero,
 then a three instruction sequence is inserted at the .amode lo-
 cation loading the mode bits into the ACON register:

 .amode 2,1 ;mode 2 is 24-bit addressing, load ACON
 ;mov ta,#0xAA
 ;mov ta,#0x55
 ;mov acon,#amode

 AZ.2.6 The .msb Directive

 The .msb directive is available in the AS8XCXXX assembler.

 The assembler operator '>' selects the upper byte (MSB) when
 included in an assembler instruction. The default assembler
 mode is to select bits <15:8> as the MSB. The .msb directive
 allows the programmer to specify a particular byte as the 'MSB'
 when the address space is larger than 16-bits.

 The assembler directive .msb n configures the assembler to
 select a particular byte as MSB. Given a 24-bit address of Nmn

 AS8XCXXX ASSEMBLER PAGE AZ-5
 AS8XCXXX ASSEMBLER DIRECTIVES

 (N(2) is <23:16>, m(1) is <15:8>, and n(0) is <7:0>) the follow-
 ing examples show how to select a particular address byte:

 .msb 1 ;select byte 1 of address
 ;<M(3):N(2):m(1):n(0)>
 LD A,>MNmn ;byte m <15:8> ==>> A
 ...

 .msb 2 ;select byte 2 of address
 ;<M(3):N(2):m(1):n(0)>
 LD A,>MNmn ;byte N <23:16> ==>> A
 ...

 AS8XCXXX ASSEMBLER PAGE AZ-6
 AS8XCXXX ASSEMBLER DIRECTIVES

 AZ.3 DS8XCXXX REGISTER SET

 The AS8XCXXX cross assembler supports the Dallas Semiconductor
 DS8XCXXX series of 8051-compatible devices. These microproces-
 sors retain instruction set and object code compatability with
 the 8051 microprocessor. The DS8XCXXX family is updated with
 several new peripherals while providing all the standard
 features of the 80C32 microprocessor.

 The following is a list of the registers used by AS8XCXXX:

 a,b - 8-bit accumulators
 r0,r1,r2,r3 - 8-bit registers
 r4,r5,r6,r7
 dptr - data pointer
 sp - stack pointer
 pc - program counter
 psw - status word
 c - carry (bit in status word)

 AZ.4 DS8XCXXX INSTRUCTION SET

 The following tables list all DS8XCXXX mnemonics recognized
 by the AS8XCXXX assembler. The following list specifies the
 format for each addressing mode supported by AS8XCXXX:

 #data immediate data
 byte or word data

 r,r1,r2 register r0,r1,r2,r3,r4,r5,r6, or r7

 @r indirect on register r0 or r1
 @dptr indirect on data pointer
 @a+dptr indirect on accumulator
 plus data pointer
 @a+pc indirect on accumulator
 plus program counter

 addr direct memory address

 bitaddr bit address

 label call or jump label

 The terms data, addr, bitaddr, and label may all be expressions.

 AS8XCXXX ASSEMBLER PAGE AZ-7
 DS8XCXXX INSTRUCTION SET

 Note that not all addressing modes are valid with every in-
 struction. Refer to the DS8XCXXX technical data for valid
 modes.

 AZ.4.1 Inherent Instructions

 nop

 AZ.4.2 Move Instructions

 mov a,#data mov a,addr
 mov a,r mov a,@r

 mov r,#data mov r,addr
 mov r,a

 mov addr,a mov addr,#data
 mov addr,r mov addr,@r
 mov addr1,addr2 mov bitaddr,c

 mov @r,#data mov @r,addr
 mov @r,a

 mov c,bitaddr
 mov dptr,#data

 movc a,@a+dptr movc a,@a+pc
 movx a,@dptr movx a,@r
 movx @dptr,a movx @r,a

 AS8XCXXX ASSEMBLER PAGE AZ-8
 DS8XCXXX INSTRUCTION SET

 AZ.4.3 Single Operand Instructions

 clr a clr c
 clr bitaddr
 cpl a cpl c
 cpl bitaddr
 setb c setb bitaddr

 da a
 rr a rrc a
 rl a rlc a
 swap a

 dec a dec r
 dec @r
 inc a inc r
 inc dptr inc @r

 div ab mul ab

 pop addr push addr

 AZ.4.4 Two Operand Instructions

 add a,#data add a,addr
 add a,r add a,@r
 addc a,#data addc a,addr
 addc a,r addc a,@r
 subb a,#data subb a,addr
 subb a,r subb a,@r
 orl a,#data orl a,addr
 orl a,r orl a,@r
 orl addr,a orl addr,#data
 orl c,bitaddr orl c,/bitaddr
 anl a,#data anl a,addr
 anl a,r anl a,@r
 anl addr,a anl addr,#data
 anl c,bitaddr anl c,/bitaddr
 xrl a,#data xrl a,addr
 xrl a,r xrl a,@r
 xrl addr,a xrl addr,#data
 xrl c,bitaddr xrl c,/bitaddr
 xch a,addr xch a,r
 xch a,@r xchd a,@r

 AS8XCXXX ASSEMBLER PAGE AZ-9
 DS8XCXXX INSTRUCTION SET

 AZ.4.5 Call and Return Instructions

 acall label lcall label
 ret reti
 in data
 out data
 rst data

 AZ.4.6 Jump Instructions

 ajmp label
 cjne a,#data,label cjne a,addr,label
 cjne r,#data,label cjne @r,#data,label
 djnz r,label djnz addr,label
 jbc bitadr,label
 jb bitadr,label jnb bitadr,label
 jc label jnc label
 jz label jnz label
 jmp @a+dptr
 ljmp label sjmp label

 AS8XCXXX ASSEMBLER PAGE AZ-10
 DS8XCXXX INSTRUCTION SET

 AZ.5 DS8XCXXX SPECIAL FUNCTION REGISTERS

 The 80C32 core Special Function Registers are selected using
 the .DS8XCXXX assembler directive.

 AZ.5.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 SP DPL DPH 83
 84 PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 8F
 90 P1 93
 94 97
 98 SCON SBUF 9B
 9C 9F
 A0 P2 A3
 A4 A7
 A8 IE SADDR0 AB
 AC AF
 B0 P3 B3
 B4 B7
 B8 IP SADEN0 BB
 BC BF
 C0 C3
 C4 STATUS C7
 C8 T2CON T2MOD RCAP2L RCAP2H CB
 CC TL2 TH2 CF
 D0 PSW D3
 D4 D7
 D8 DB
 DC DF
 E0 ACC E3
 E4 E7
 E8 EB
 EC EF
 F0 B F3
 F4 F7
 F8 FB
 FC FF

 AS8XCXXX ASSEMBLER PAGE AZ-11
 DS8XCXXX SPECIAL FUNCTION REGISTERS

 AZ.5.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 P1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F
 P2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 P3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 C0 C3
 C4 C7
 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB
 CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 D8 DB
 DC DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 E8 EB
 EC EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 F8 FB
 FC FF

 AS8XCXXX ASSEMBLER PAGE AZ-12
 DS8XCXXX SPECIAL FUNCTION REGISTERS

 AZ.5.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 90 93
 94 97
 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 EA AF
 B0 B3
 B4 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PT2 BF
 C0 C3
 C4 C7
 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB
 CC TCLK RCLK EXF2 TF2 CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 D8 DB
 DC DF
 E0 E3
 E4 E7
 E8 EB
 EC EF
 F0 F3
 F4 F7
 F8 FB
 FC FF

 Alternates:

 SCON 98 9B
 9C FE 9F
 T2CON C8 CP_RL2 C_T2 CB
 CC CF

 AS8XCXXX ASSEMBLER PAGE AZ-13
 DS8XCXXX SPECIAL FUNCTION REGISTERS

 AZ.5.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 PCON 0x80 SMOD SMOD0 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 STATUS 0x80 HIP LIP 0x10
 0x08 0x01
 T2MOD 0x80 0x10
 0x08 T2OE DCEN 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-14
 DS8XCXXX SPECIAL FUNCTION REGISTERS

 AZ.6 DS80C310 SPECIAL FUNCTION REGISTERS

 The DS80C310 Special Function Registers are selected using
 the .DS80C310 assembler directive.

 AZ.6.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 SP DPL DPH 83
 84 DPL1 DPH1 DPS PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 CKCON 8F
 90 P1 EXIF 93
 94 97
 98 SCON SBUF 9B
 9C 9F
 A0 P2 A3
 A4 A7
 A8 IE SADDR0 AB
 AC AF
 B0 P3 B3
 B4 B7
 B8 IP SADEN0 BB
 BC BF
 C0 C3
 C4 STATUS C7
 C8 T2CON T2MOD RCAP2L RCAP2H CB
 CC TL2 TH2 CF
 D0 PSW D3
 D4 D7
 D8 WDCON DB
 DC DF
 E0 ACC E3
 E4 E7
 E8 EIE EB
 EC EF
 F0 B F3
 F4 F7
 F8 EIP FB
 FC FF

 AS8XCXXX ASSEMBLER PAGE AZ-15
 DS80C310 SPECIAL FUNCTION REGISTERS

 AZ.6.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 P1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F
 P2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 P3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 C0 C3
 C4 C7
 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB
 CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB
 DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB
 EC EIE.4 EIE.5 EIE.6 EIE.7 EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB
 FC EIP.4 EIP.5 EIP.6 EIP.7 FF

 AS8XCXXX ASSEMBLER PAGE AZ-16
 DS80C310 SPECIAL FUNCTION REGISTERS

 AZ.6.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 90 93
 94 97
 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 EA AF
 B0 B3
 B4 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PT2 BF
 C0 C3
 C4 C7
 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB
 CC TCLK RCLK EXF2 TF2 CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 WDCON D8 DB
 DC POR DF
 E0 E3
 E4 E7
 EIE E8 EX2 EX3 EX4 EX5 EB
 EC EF
 F0 F3
 F4 F7
 EIP F8 PX2 PX3 PX4 PX5 FB
 FC FF

 Alternates:

 SCON 98 9B
 9C FE 9F
 T2CON C8 CP_RL2 C_T2 CB
 CC CF

 AS8XCXXX ASSEMBLER PAGE AZ-17
 DS80C310 SPECIAL FUNCTION REGISTERS

 AZ.6.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 DPS 0x80 0x10
 0x08 SEL 0x01
 PCON 0x80 SMOD SMOD0 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 CKCON 0x80 T2M T1M 0x10
 0x08 T0M MD2 MD1 MD0 0x01
 EXIF 0x80 IE5 IE4 IE3 IE2 0x10
 0x08 0x01
 STATUS 0x80 HIP LIP 0x10
 0x08 0x01
 T2MOD 0x80 0x10
 0x08 T2OE DCEN 0x01

 Alternates:

 PCON 0x80 SMOD_0 0x10
 0x08 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-18
 DS80C310 SPECIAL FUNCTION REGISTERS

 AZ.7 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS

 The DS80C320/DS80C323 Special Function Registers are selected
 using the .DS80C320 or DS80C323 assembler directives.

 AZ.7.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 SP DPL DPH 83
 84 DPL1 DPH1 DPS PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 CKCON 8F
 90 P1 EXIF 93
 94 97
 98 SCON0 SBUF0 9B
 9C 9F
 A0 P2 A3
 A4 A7
 A8 IE SADDR0 AB
 AC AF
 B0 P3 B3
 B4 B7
 B8 IP SADEN0 BB
 BC BF
 C0 SCON1 SBUF1 C3
 C4 STATUS TA C7
 C8 T2CON T2MOD RCAP2L RCAP2H CB
 CC TL2 TH2 CF
 D0 PSW D3
 D4 D7
 D8 WDCON DB
 DC DF
 E0 ACC E3
 E4 E7
 E8 EIE EB
 EC EF
 F0 B F3
 F4 F7
 F8 EIP FB
 FC FF

 Alternates:

 98 SCON SBUF 9B

 AS8XCXXX ASSEMBLER PAGE AZ-19
 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS

 AZ.7.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 P1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B
 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F
 P2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 P3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3
 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7
 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB
 CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB
 DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB
 EC EIE.4 EIE.5 EIE.6 EIE.7 EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB
 FC EIP.4 EIP.5 EIP.6 EIP.7 FF

 Alternates:

 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F

 AS8XCXXX ASSEMBLER PAGE AZ-20
 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS

 AZ.7.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 90 93
 94 97
 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B
 9C REN_0 SM2_0 SM1_0 SMO_0 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 EA AF
 B0 B3
 B4 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PT2 BF
 SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3
 C4 REN_1 SM2_1 SM1_1 SMO_1 C7
 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB
 CC TCLK RCLK EXF2 TF2 CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 WDCON D8 RWT EWT WTRF WDIF DB
 DC PFI EPFI POR SMOD_1 DF
 E0 E3
 E4 E7
 EIE E8 EX2 EX3 EX4 EX5 EB
 EC EWDI EF
 F0 F3
 F4 F7
 EIP F8 PX2 PX3 PX4 PX5 FB
 FC PWDI FF

 Alternates:

 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 SCON 98 9B
 9C FE 9F
 SCON0 98 9B
 9C FE_0 9F
 SCON1 C0 C3
 C4 FE_1 C7
 T2CON C8 CP_RL2 C_T2 CB
 CC CF

 AS8XCXXX ASSEMBLER PAGE AZ-21
 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS

 AZ.7.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 DPS 0x80 0x10
 0x08 SEL 0x01
 PCON 0x80 SMOD_0 SMOD0 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 CKCON 0x80 WD1 WD0 T2M T1M 0x10
 0x08 T0M MD2 MD1 MD0 0x01
 EXIF 0x80 IE5 IE4 IE3 IE2 0x10
 0x08 RGMD RGSL BGS 0x01
 STATUS 0x80 PIP HIP LIP 0x10
 0x08 0x01
 T2MOD 0x80 0x10
 0x08 T2OE DCEN 0x01

 Alternates:

 PCON 0x80 SMOD 0x10
 0x08 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-22
 DS80C320/DS80C323 SPECIAL FUNCTION REGISTERS

 AZ.8 DS80C390 SPECIAL FUNCTION REGISTERS

 The DS80C390 Special Function Registers are selected using
 the .DS80C390 assembler directive.

 AZ.8.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 P4 SP DPL DPH 83
 84 DPL1 DPH1 DPS PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 CKCON 8F
 90 P1 EXIF P4CNT DPX 93
 94 DPX1 C0RMS0 C0RMS1 97
 98 SCON0 SBUF0 ESP 9B
 9C AP ACON C0TMA0 C0TMA1 9F
 A0 P2 P5 P5CNT C0C A3
 A4 C0S C0IR C0TE C0RE A7
 A8 IE SADDR0 SADDR1 C0M1C AB
 AC C0M2C C0M3C C0M4C C0M5C AF
 B0 P3 C0M6C B3
 B4 C0M7C C0M8C C0M9C C0M10C B7
 B8 IP SADEN0 SADEN1 C0M11C BB
 BC C0M12C C0M13C C0M14C C0M15C BF
 C0 SCON1 SBUF1 C3
 C4 PMR STATUS MCON TA C7
 C8 T2CON T2MOD RCAP2L RCAP2H CB
 CC TL2 TH2 COR CF
 D0 PSW MCNT0 MCNT1 MA D3
 D4 MB MC C1RMS0 C1RMS1 D7
 D8 WDCON DB
 DC C1TMA0 C1TMA1 DF
 E0 ACC C1C E3
 E4 C1S C1IR C1TE C1RE E7
 E8 EIE MXAX C1M1C EB
 EC C1M2C C1M3C C1M4C C1M5C EF
 F0 B C1M6C F3
 F4 C1M7C C1M8C C1M9C C1M10C F7
 F8 EIP C1M11C FB
 FC C1M12C C1M13C C1M14C C1M15C FF

 Alternates:

 98 SCON SBUF 9B

 AS8XCXXX ASSEMBLER PAGE AZ-23
 DS80C390 SPECIAL FUNCTION REGISTERS

 AZ.8.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 P4 80 P4.0 P4.1 P4.2 P4.3 83
 84 P4.4 P4.5 P4.6 P4.7 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 P1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B
 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F
 P2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 P3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3
 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7
 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB
 CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB
 DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB
 EC EIE.4 EIE.5 EIE.6 EIE.7 EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB
 FC EIP.4 EIP.5 EIP.6 EIP.7 FF

 Alternates:

 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F

 AS8XCXXX ASSEMBLER PAGE AZ-24
 DS80C390 SPECIAL FUNCTION REGISTERS

 AZ.8.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 P1 90 T2 T2EX RXD1 TXD1 93
 94 INT2 INT3 INT4 INT5 97
 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B
 9C REN_0 SM2_0 SM1_0 SMO_0 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 ES1 EA AF
 P3 B0 RXD0 TXD0 INT0 INT1 B3
 B4 T0 T1 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PT2 PS1 BF
 SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3
 C4 REN_1 SM2_1 SM1_1 SMO_1 C7
 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB
 CC TCLK RCLK EXF2 TF2 CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 WDCON D8 RWT EWT WTRF WDIF DB
 DC PFI EPFI POR SMOD_1 DF
 E0 E3
 E4 E7
 EIE E8 EX2 EX3 EX4 EX5 EB
 EC EWDI C1IE C0IE CANBIE EF
 F0 F3
 F4 F7
 EIP F8 PX2 PX3 PX4 PX5 FB
 FC PWDI C1IP C0IP CANBIP FF

 Alternates:

 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 SCON 98 9B
 9C FE 9F
 SCON0 98 9B
 9C FE_0 9F
 SCON1 C0 C3
 C4 FE_1 C7
 T2CON C8 CP_RL2 C_T2 CB
 CC CF

 AS8XCXXX ASSEMBLER PAGE AZ-25
 DS80C390 SPECIAL FUNCTION REGISTERS

 AZ.8.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 DPS 0x80 ID1 ID0 TSL 0x10
 0x08 SEL 0x01
 PCON 0x80 SMOD_0 SMOD0 OFDF OFDE 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 CKCON 0x80 WD1 WD0 T2M T1M 0x10
 0x08 T0M MD2 MD1 MD0 0x01
 EXIF 0x80 IE5 IE4 IE3 IE2 0x10
 0x08 CKRY RGMD RGSL BGS 0x01
 P4CNT 0x80 SBCAN 0x10
 0x08 0x01
 ESP 0x80 0x10
 0x08 ESP.1 ESP.0 0x01
 ACON 0x80 0x10
 0x08 SA AM1 AM0 0x01
 P5 0x80 P5.7 P5.6 P5.5 P5.4 0x10
 0x08 P5.3 P5.2 P5.1 P5.0 0x01
 P5CNT 0x80 CAN1BA CAN0BA SP1EC C1_IO 0x10
 0x08 C0_IO P5CNT.2 P5CNT.1 P5CNT.0 0x01
 CxC 0x80 ERIE STIE PDE SIESTA 0x10
 0x08 CRST AUTOB ERCS SWINT 0x01
 CxS 0x80 BSS EC96_128 WKS RXS 0x10
 0x08 TXS ER2 ER1 ER0 0x01
 CxIR 0x80 INTIN7 INTIN6 INTIN5 INTIN4 0x10
 0x08 INTIN3 INTIN2 INTIN1 INTIN0 0x01
 CxCxxC 0x80 MSRDY ET1 ER1 INTRQ 0x10
 0x08 EXTRQ MTRQ ROW_TIH DTUP 0x01
 PMR 0x80 CD1 CD0 SWB CTM 0x10
 0x08 4X_2X ALEOFF 0x01
 STATUS 0x80 PIP HIP LIP 0x10
 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01
 MCON 0x80 IDM1 IDM0 CMA 0x10
 0x08 PDCE3 PDCE2 PDCE1 PDCE0 0x01
 T2MOD 0x80 D13T1 0x10
 0x08 D13T2 T2OE DCEN 0x01
 COR 0x80 IRDACK C1BPR7 C1BPR6 C0BPR7 0x10
 0x08 C0BPR6 COD1 COD0 CLKOE 0x01
 MCNT0 0x80 _LSHIFT CSE SCB MAS4 0x10
 0x08 MAS3 MAS2 MAS1 MAS0 0x01
 MCNT1 0x80 MST MOF CLM 0x10
 0x08 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-26
 DS80C390 SPECIAL FUNCTION REGISTERS

 Alternates:

 PCON 0x80 SMOD 0x10
 0x08 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-27
 DS80C390 SPECIAL FUNCTION REGISTERS

 AZ.9 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS

 The DS83C520/DS87C520 Special Function Registers are selected
 using the .DS83C520 or DS87C520 assembler directives.

 AZ.9.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 P0 SP DPL DPH 83
 84 DPL1 DPH1 DPS PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 CKCON 8F
 90 PORT1 EXIF 93
 94 97
 98 SCON0 SBUF0 9B
 9C 9F
 A0 P2 A3
 A4 A7
 A8 IE SADDR0 SADDR1 AB
 AC AF
 B0 P3 B3
 B4 B7
 B8 IP SADEN0 SADEN1 BB
 BC BF
 C0 SCON1 SBUF1 ROMSIZE C3
 C4 PMR STATUS TA C7
 C8 T2CON T2MOD RCAP2L RCAP2H CB
 CC TL2 TH2 CF
 D0 PSW D3
 D4 D7
 D8 WDCON DB
 DC DF
 E0 ACC E3
 E4 E7
 E8 EIE EB
 EC EF
 F0 B F3
 F4 F7
 F8 EIP FB
 FC FF

 Alternates:

 98 SCON SBUF 9B

 AS8XCXXX ASSEMBLER PAGE AZ-28
 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS

 AZ.9.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 P0 80 P0.7 P0.6 P0.5 P0.4 83
 84 P0.3 P0.2 P0.1 P0.0 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 PORT1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B
 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F
 P2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 P3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3
 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7
 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB
 CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB
 DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB
 EC EIE.4 EIE.5 EIE.6 EIE.7 EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB
 FC EIP.4 EIP.5 EIP.6 EIP.7 FF

 Alternates:

 PORT1 90 PORT1.0 PORT1.1 PORT1.2 PORT1.3 93
 94 PORT1.4 PORT1.5 PORT1.6 PORT1.7 97
 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F

 AS8XCXXX ASSEMBLER PAGE AZ-29
 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS

 AZ.9.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 90 93
 94 97
 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B
 9C REN_0 SM2_0 SM1_0 SMO_0 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 ES1 EA AF
 B0 B3
 B4 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PT2 PS1 BF
 SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3
 C4 REN_1 SM2_1 SM1_1 SMO_1 C7
 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB
 CC TCLK RCLK EXF2 TF2 CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 WDCON D8 RWT EWT WTRF WDIF DB
 DC PFI EPFI POR SMOD_1 DF
 E0 E3
 E4 E7
 EIE E8 EX2 EX3 EX4 EX5 EB
 EC EWDI EF
 F0 F3
 F4 F7
 EIP F8 PX2 PX3 PX4 PX5 FB
 FC PWDI FF

 Alternates:

 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 SCON 98 9B
 9C FE 9F
 SCON0 98 9B
 9C FE_0 9F
 SCON1 C0 C3
 C4 FE_1 C7
 T2CON C8 CP_RL2 C_T2 CB
 CC CF

 AS8XCXXX ASSEMBLER PAGE AZ-30
 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS

 AZ.9.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 DPS 0x80 0x10
 0x08 SEL 0x01
 PCON 0x80 SMOD_0 SMOD0 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 CKCON 0x80 WD1 WD0 T2M T1M 0x10
 0x08 T0M MD2 MD1 MD0 0x01
 EXIF 0x80 IE5 IE4 IE3 IE 0x10
 0x08 XT_RG RGMD RGSL BGS 0x01
 SBUF1 0x80 SB7 SB6 SB5 SB4 0x10
 0x08 SB3 SB2 SB1 SB0 0x01
 ROMSIZE 0x80 0x10
 0x08 RMS2 RMS1 RMS0 0x01
 PMR 0x80 CD1 CD0 SWB 0x10
 0x08 XTOFF ALEOFF DME1 DME0 0x01
 STATUS 0x80 PIP HIP LIP XTUP 0x10
 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01
 T2MOD 0x80 0x10
 0x08 T2OE DCEN 0x01

 Alternates:

 PCON 0x80 SMOD 0x10
 0x08 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-31
 DS83C520/DS87C520 SPECIAL FUNCTION REGISTERS

 AZ.10 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS

 The DS83C530/DS87C530 Special Function Registers are selected
 using the .DS83C530 or DS87C530 assembler directives.

 AZ.10.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 P0 SP DPL DPH 83
 84 DPL1 DPH1 DPS PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 CKCON 8F
 90 P1 EXIF 93
 94 TRIM 97
 98 SCON0 SBUF0 9B
 9C 9F
 A0 P2 A3
 A4 A7
 A8 IE SADDR0 SADDR1 AB
 AC AF
 B0 P3 B3
 B4 B7
 B8 IP SADEN0 SADEN1 BB
 BC BF
 C0 SCON1 SBUF1 ROMSIZE C3
 C4 PMR STATUS TA C7
 C8 T2CON T2MOD RCAP2L RCAP2H CB
 CC TL2 TH2 CF
 D0 PSW D3
 D4 D7
 D8 WDCON DB
 DC DF
 E0 ACC E3
 E4 E7
 E8 EIE EB
 EC EF
 F0 B RTASS RTAS F3
 F4 RTAM RTAH F7
 F8 EIP RTCC RTCSS RTCS FB
 FC RTCM RTCH RTCD0 RTCD1 FF

 Alternates:

 98 SCON SBUF 9B

 AS8XCXXX ASSEMBLER PAGE AZ-32
 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS

 AZ.10.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 P0 80 P0.7 P0.6 P0.5 P0.4 83
 84 P0.3 P0.2 P0.1 P0.0 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 P1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B
 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F
 P2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 P3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 SCON1 C0 SCON1.0 SCON1.1 SCON1.2 SCON1.3 C3
 C4 SCON1.4 SCON1.5 SCON1.6 SCON1.7 C7
 T2CON C8 T2CON.0 T2CON.1 T2CON.2 T2CON.3 CB
 CC T2CON.4 T2CON.5 T2CON.6 T2CON.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 WDCON D8 WDCON.0 WDCON.1 WDCON.2 WDCON.3 DB
 DC WDCON.4 WDCON.5 WDCON.6 WDCON.7 DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB
 EC EIE.4 EIE.5 EIE.6 EIE.7 EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB
 FC EIP.4 EIP.5 EIP.6 EIP.7 FF

 Alternates:

 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F

 AS8XCXXX ASSEMBLER PAGE AZ-33
 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS

 AZ.10.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 90 93
 94 97
 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B
 9C REN_0 SM2_0 SM1_0 SMO_0 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 ES1 EA AF
 B0 B3
 B4 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PT2 PS1 BF
 SCON1 C0 RI_1 TI_1 RB8_1 TB8_1 C3
 C4 REN_1 SM2_1 SM1_1 SMO_1 C7
 T2CON C8 CPRL2 CT2 TR2 EXEN2 CB
 CC TCLK RCLK EXF2 TF2 CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 WDCON D8 RWT EWT WTRF WDIF DB
 DC PFI EPFI POR SMOD_1 DF
 E0 E3
 E4 E7
 EIE E8 EX2 EX3 EX4 EX5 EB
 EC EWDI ERTCI EF
 F0 F3
 F4 F7
 EIP F8 PX2 PX3 PX4 PX5 FB
 FC PWDI PRTCI FF

 Alternates:

 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 SCON 98 9B
 9C FE 9F
 SCON0 98 9B
 9C FE_0 9F
 SCON1 C0 C3
 C4 FE_1 C7
 T2CON C8 CP_RL2 C_T2 CB
 CC CF

 AS8XCXXX ASSEMBLER PAGE AZ-34
 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS

 AZ.10.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 DPS 0x80 0x10
 0x08 SEL 0x01
 PCON 0x80 SMOD_0 SMOD0 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 CKCON 0x80 WD1 WD0 T2M T1M 0x10
 0x08 T0M MD2 MD1 MD0 0x01
 EXIF 0x80 IE5 IE4 IE3 IE 0x10
 0x08 XT_RG RGMD RGSL BGS 0x01
 TRIM 0x80 E4K X12_6 TRM2 _TRM2 0x10
 0x08 TRM1 _TRM1 TRM0 _TRM0 0x01
 SBUF1 0x80 SB7 SB6 SB5 SB4 0x10
 0x08 SB3 SB2 SB1 SB0 0x01
 ROMSIZE 0x80 0x10
 0x08 RMS2 RMS1 RMS0 0x01
 PMR 0x80 CD1 CD0 SWB 0x10
 0x08 XTOFF ALEOFF DME1 DME0 0x01
 STATUS 0x80 PIP HIP LIP XTUP 0x10
 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01
 T2MOD 0x80 0x10
 0x08 T2OE DCEN 0x01
 RTCC 0x80 SSCE SCE MCE HCE 0x10
 0x08 RTCRE RTCWE RTCIF RTCE 0x01

 Alternates:

 PCON 0x80 SMOD 0x10
 0x08 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-35
 DS83C530/DS87C530 SPECIAL FUNCTION REGISTERS

 AZ.11 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 The DS83C550/DS87C550 Special Function Registers are selected
 using the .DS83C550 or DS87C550 assembler directives.

 AZ.11.1 SFR Map

 --------- 4 Bytes ----------
 ---- ---- ---- ----
 80 PORT0 SP DPL DPH 83
 84 DPL1 DPH1 DPS PCON 87
 88 TCON TMOD TL0 TL1 8B
 8C TH0 TH1 CKCON 8F
 90 PORT1 RCON 93
 94 97
 98 SCON0 SBUF0 9B
 9C PMR 9F
 A0 PORT2 SADDR0 SADDR1 A3
 A4 A7
 A8 IE CMPL0 CMPL1 CMPL2 AB
 AC CPTL0 CPTL1 CPTL2 CPTL3 AF
 B0 PORT3 ADCON1 ADCON2 B3
 B4 ADMSB ADLSD WINHI WINLO B7
 B8 IP SADEN0 SADEN1 BB
 BC T2CON T2MOD BF
 C0 PORT4 ROMSIZE C3
 C4 PORT5 STATUS TA C7
 C8 T2IR CMPH0 CMPH1 CMPH2 CB
 CC CPTH0 CPTH1 CPTH2 CPTH3 CF
 D0 PSW PW0FG PW1FG D3
 D4 PW2FG PW3FG PWMADR D7
 D8 SCON1 SBUF1 DB
 DC PWM0 PWM1 PWM2 PWM3 DF
 E0 ACC PW01CS PW23CS PW01CON E3
 E4 PW23CON RLOADL RLOADH E7
 E8 EIE T2SEL CTCON EB
 EC TL2 TH2 SETR RSTR EF
 F0 B PORT6 F3
 F4 F7
 F8 EIP FB
 FC WDCON FF

 Alternates:

 80 P0 83
 90 P1 93
 98 SCON SBUF 9B

 AS8XCXXX ASSEMBLER PAGE AZ-36
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 A0 P2 A3
 B0 P3 B3
 C0 P4 C3
 C4 P5 C7
 F0 PORT6 F3

 AS8XCXXX ASSEMBLER PAGE AZ-37
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 AZ.11.2 Bit Addressable Registers: Generic

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 PORT0 80 P0.7 P0.6 P0.5 P0.4 83
 84 P0.3 P0.2 P0.1 P0.0 87
 TCON 88 TCON.0 TCON.1 TCON.2 TCON.3 8B
 8C TCON.4 TCON.5 TCON.6 TCON.7 8F
 PORT1 90 P1.0 P1.1 P1.2 P1.3 93
 94 P1.4 P1.5 P1.6 P1.7 97
 SCON0 98 SCON0.0 SCON0.1 SCON0.2 SCON0.3 9B
 9C SCON0.4 SCON0.5 SCON0.6 SCON0.7 9F
 PORT2 A0 P2.0 P2.1 P2.2 P2.3 A3
 A4 P2.4 P2.5 P2.6 P2.7 A7
 IE A8 IE.0 IE.1 IE.2 IE.3 AB
 AC IE.4 IE.5 EI.6 IE.7 AF
 PORT3 B0 P3.0 P3.1 P3.2 P3.3 B3
 B4 P3.4 P3.5 P3.6 P3.7 B7
 IP B8 IP.0 IP.1 IP.2 IP.3 BB
 BC IP.4 IP.5 IP.6 IP.7 BF
 PORT4 C0 P4.0 P4.1 P4.2 P4.3 C3
 C4 P4.4 P4.5 P4.6 P4.7 C7
 T2IR C8 T2IR.0 T2IR.1 T2IR.2 T2IR.3 CB
 CC T2IR.4 T2IR.5 T2IR.6 T2IR.7 CF
 PSW D0 PSW.0 PSW.1 PSW.2 PSW.3 D3
 D4 PSW.4 PSW.5 PSW.6 PSW.7 D7
 SCON1 D8 SCON1.0 SCON1.1 SCON1.2 SCON1.3 DB
 DC SCON1.4 SCON1.5 SCON1.6 SCON1.7 DF
 ACC E0 ACC.0 ACC.1 ACC.2 ACC.3 E3
 E4 ACC.4 ACC.5 ACC.6 ACC.7 E7
 EIE E8 EIE.0 EIE.1 EIE.2 EIE.3 EB
 EC EIE.4 EIE.5 EIE.6 EIE.7 EF
 B F0 B.0 B.1 B.2 B.3 F3
 F4 B.4 B.5 B.6 B.7 F7
 EIP F8 EIP.0 EIP.1 EIP.2 EIP.3 FB
 FC EIP.4 EIP.5 EIP.6 EIP.7 FF

 Alternates:

 PORT0 80 PORT0.7 PORT0.6 PORT0.5 PORT0.4 83
 84 PORT0.3 PORT0.2 PORT0.1 PORT0.0 87
 PORT1 90 PORT1.0 PORT1.1 PORT1.2 PORT1.3 93
 94 PORT1.4 PORT1.5 PORT1.6 PORT1.7 97
 SCON 98 SCON.0 SCON.1 SCON.2 SCON.3 9B
 9C SCON.4 SCON.5 SCON.6 SCON.7 9F
 PORT2 A0 PORT2.0 PORT2.1 PORT2.2 PORT2.3 A3
 A4 PORT2.4 PORT2.5 PORT2.6 PORT2.7 A7
 PORT3 B0 PORT3.0 PORT3.1 PORT3.2 PORT3.3 B3
 B4 PORT3.4 PORT3.5 PORT3.6 PORT3.7 B7

 AS8XCXXX ASSEMBLER PAGE AZ-38
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 PORT4 C0 PORT4.0 PORT4.1 PORT4.2 PORT4.3 C3
 C4 PORT4.4 PORT4.5 PORT4.6 PORT4.7 C7

 AS8XCXXX ASSEMBLER PAGE AZ-39
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 AZ.11.3 Bit Addressable Registers: Specific

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 80 83
 84 87
 TCON 88 IT0 IE0 IT1 IE1 8B
 8C TR0 TF0 TR1 TF1 8F
 90 93
 94 97
 SCON0 98 RI_0 TI_0 RB8_0 TB8_0 9B
 9C REN_0 SM2_0 SM1_0 SMO_0 9F
 A0 A3
 A4 A7
 IE A8 EX0 ET0 EX1 ET1 AB
 AC ES0 ET2 ES1 EA AF
 B0 B3
 B4 B7
 IP B8 PX0 PT0 PX1 PT1 BB
 BC PS0 PS1 PAD BF
 PORT4 C0 CMSR0 CMSR1 CMSR2 CMSR3 C3
 C4 CMSR4 CMSR5 CMT0 CMT1 C7
 T2IR C8 CF0 CF1 CF2 CF3 CB
 CC CM0F CM1F CM2F CF
 PSW D0 P FL OV RS0 D3
 D4 RS1 F0 AC CY D7
 SCON1 D8 RI_1 TI_1 RB8_1 TB8_1 DB
 DC REN_1 SM2_1 SM1_1 SMO_1 DF
 E0 E3
 E4 E7
 EIE E8 EX2 EX3 EX4 EX5 EB
 EC ECM0 ECM1 ECM2 ET2 EF
 F0 F3
 F4 F7
 EIP F8 PX2 PX3 PX4 PX5 FB
 FC PCM0 PCM1 PCM2 PT2 FF

 Alternates:

 SCON 98 RI TI RB8 TB8 9B
 9C REN SM2 SM1 SMO 9F
 SCON 98 9B
 9C FE 9F
 SCON0 98 9B
 9C FE_0 9F
 T2IR C8 IE2 IE3 IE4 IE5 CB
 CC CF
 SCON1 D8 DB
 DC FE_1 DF

 AS8XCXXX ASSEMBLER PAGE AZ-40
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 EIE E8 EC0 EC1 EC2 EC3 EB
 EC EF
 EIP F8 PC0 PC1 PC2 PC3 FB
 FC FF

 AS8XCXXX ASSEMBLER PAGE AZ-41
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 AZ.11.4 Optional Symbols: Control Bits

 ---------- 4 BITS ----------
 ---- ---- ---- ----
 0x80 0x40 0x20 0x10
 0x08 0x04 0x02 0x10
 ---- ---- ---- ----
 DPS 0x80 ID1 ID0 TSL 0x10
 0x08 SEL 0x01
 PCON 0x80 SMOD_0 SMOD0 0x10
 0x08 GF1 GF0 STOP IDLE 0x01
 TMOD 0x80 T1GATE T1C_T T1M1 T1M0 0x10
 0x08 T0GATE T0C_T T0M1 T0M0 0x01
 CKCON 0x80 WD1 WD0 T2M T1M 0x10
 0x08 T0M MD2 MD1 MD0 0x01
 RCON 0x80 0x10
 0x08 CKRDY RGMD RGSL BGS 0x01
 PMR 0x80 CD1 CD0 SWB CTM 0x10
 0x08 4X_2X ALEOFF DEM1 DEM0 0x01
 ADCON1 0x80 STRT_BSY EOC CONT_SS ADEX 0x10
 0x08 WCQ WCM ADON WCIO 0x01
 ADCON2 0x80 OUTCF MUX2 MUX1 MUX0 0x10
 0x08 APS3 APS2 APS1 APS0 0x01
 T2CON 0x80 TF2 EXF2 RCLK TCLK 0x10
 0x08 EXEN2 TR2 CT2 CPRL2 0x01
 T2MOD 0x80 0x10
 0x08 T2OE DCEN 0x01
 PORT5 0x80 ADC7 ADC6 ADC5 ADC4 0x10
 0x08 ADC3 ADC2 ADC1 ADC0 0x01
 ROMSIZE 0x80 0x10
 0x08 RMS2 RMS1 RMS0 0x01
 STATUS 0x80 PIP HIP LIP XTUP 0x10
 0x08 SPTA1 SPRA1 SPTA0 SPRA0 0x01
 PWMADR 0x80 ADRS 0x10
 0x08 PWE1 PWE0 0x01
 PW01CS 0x80 PW0S2 PW0S1 PW0S0 PW0EN 0x10
 0x08 PW1S2 PW1S1 PW1S0 PW1EN 0x01
 PW23CS 0x80 PW2S2 PW2S1 PW2S0 PW2EN 0x10
 0x08 PW3S2 PW3S1 PW3S0 PW3EN 0x01
 PW01CON 0x80 PW0F PW0DC PW0OE PW0T_C 0x10
 0x08 PW1F PW1DC PW1OE PW1T_C 0x01
 PW23CON 0x80 PW2F PW2DC PW2OE PW2T_C 0x10
 0x08 PW3F PW3DC PW3OE PW3T_C 0x01
 T2SEL 0x80 TF2S TF2BS TF2B 0x10
 0x08 T2P1 T2P0 0x01
 CTCON 0x80 _CT3 CT3 _CT2 CT2 0x10
 0x08 _CT1 CT1 _CT0 CT0 0x01
 SETR 0x80 TGFF1 TGFF0 CMS5 CMS4 0x10
 0x08 CMS3 CMS2 CMS1 CMS0 0x01

 AS8XCXXX ASSEMBLER PAGE AZ-42
 DS83C550/DS87C550 SPECIAL FUNCTION REGISTERS

 RSTR 0x80 CMTE1 CMTE0 CMR5 CMR4 0x10
 0x08 CMR3 CMR2 CMR1 CMR0 0x01
 PORT6 0x80 STADC PWMC1 PWMC0 0x10
 0x08 PWMO3 PWMO2 PWMO1 PWMO0 0x01
 WDCON 0x80 SMOD_1 POR EPF1 PF1 0x10
 0x08 WDIF WTRF EWT RWT 0x01

 Alternates:

 PCON 0x80 SMOD 0x10
 0x08 0x01
 T2CON 0x80 0x10
 0x08 C_T2 _RL2 0x01

 APPENDIX BA

 ASAVR ASSEMBLER

 BA.1 AVR ASSEMBLER NOTES

 The AVR series of processors uses a non unified addressing
 scheme: the instruction addressing is 1 per instruction word,
 each instruction uses 2 bytes of memory. The processor data is
 addressed as 1 per byte of data. To properly address the pro-
 gram/data spaces you, the programmer, must seperate your program
 and data into seperate code and data areas. The data area is
 addressed as 1 per byte and the code area is addressed as 1 per
 word.

 The assembler/linker processes the instruction code so that
 the linker will output 2 bytes for each instruction word. The
 instruction word address will be the file encoded address
 divided by 2.

 The default address space is assumed to be 64K (16-bits).
 The larger address space (ATmega...) processors must specify the
 32-Bit addressing assembler directive '.32bit' in order to pro-
 cess the JMP instruction.

 ASAVR ASSEMBLER PAGE BA-2
 AVR ASSEMBLER NOTES

 BA.1.1 Processor Specific Directives

 The normal PC relative addressing is -2047 to +2048 relative
 to the current PC. For a processor with less than 4K words of
 program space the AVR relative jump/call can access any location
 due to address wrap around.

 The ASAVR cross assembler has one (1) processor specific as-
 sembler directive which tells the assembler that the AVR has 4K
 words or less of program space.

 .avr_4k 0 Normal PC Relative addressing
 .avr_4k 1 AVR with <= 4K of Memory

 The remaining processor specific directives specify the AVR
 processor type.

 .AT90SXXXX
 .AT90S1200
 .AT90S2313
 .AT90S2323
 .AT90S2343
 .AT90S2333
 .AT90S4433
 .AT90S4414
 .AT90S4434
 .AT90S8515
 .AT90C8534
 .AT90S8535
 .ATmega103
 .ATmega603
 .ATmega161
 .ATmega163
 .ATtiny10
 .ATtiny11
 .ATtiny12
 .ATtiny15
 .ATtiny22
 .ATtiny28

 A file, avr.sfr, contains definitions for the Spepcial Func-
 tion Registers for all the defined processors. Edit the file to
 make your selection of processor and then .include the file at
 the beginning of your assembler file.

 ASAVR ASSEMBLER PAGE BA-3
 AVR ASSEMBLER NOTES

 BA.1.2 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the ASAVR
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 Undefined 0
 AT90SXXXX (User Defined) 1
 AT90S1200 2
 AT90S2313 3
 AT90S2323 4
 AT90S2343 5
 AT90S2333 6
 AT90S4433 7
 AT90S4414 8
 AT90S4434 9
 AT90S8515 10
 AT90C8534 11
 AT90S8535 12
 ATmega103 13
 ATmega603 14
 ATmega161 15
 ATmega163 16
 ATtiny10 17
 ATtiny11 18
 ATtiny12 19
 ATtiny15 20
 ATtiny22 21
 ATtiny28 22

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 ASAVR ASSEMBLER PAGE BA-4
 AVR REGISTER SET

 BA.2 AVR REGISTER SET

 The following is a list of the AVR registers used by ASAVR:

 r0-r31 - 8-bit registers
 x - index register (x = r27:r26)
 y - index register (y = r29:r28)
 z - index register (z = r31:r30)

 BA.3 AVR INSTRUCTION SET

 The following tables list all AVR mnemonics recognized by the
 ASAVR assembler. The designation [] refers to a required ad-
 dressing mode argument. The following list specifies the format
 for each addressing mode supported by ASAVR:

 #data immediate data

 expr expression

 Rd destination register (0-31)

 Rd,Rs destination register (0-31)
 source register (0-31)

 Rd,#data destination register (0-31)
 immediate data

 addr address

 addr,Rs destination address
 source register

 Rd,addr destination register
 source address

 Rs,b source register
 bit position

 Rd,b destination register
 bit position

 A an I/O register (0-31)

 A,b an I/O register (0-31)
 bit position

 ASAVR ASSEMBLER PAGE BA-5
 AVR INSTRUCTION SET

 A,Rs source register to
 output register

 Rd,A input register to
 destination register

 Rd,X load indirect
 Rd,Y
 Rd,Z

 Rd,-X load indirect pre-decrement
 Rd,-Y
 Rd,-Z

 Rd,X+ load indirect post-increment
 Rd,Y+
 Rd,Z+

 Rd,Z+Q load indirect with displacement

 X,Rs store indirect
 Y,Rs
 Z,Rs

 -X,Rs store indirect pre-decrement
 -Y,Rs
 -Z,Rs

 X+,Rs store indirect post increment
 Y+,Rs
 Z+,Rs

 Z+Q,Rs store indirect with displacement

 label branch label

 The terms data, expr, displacement, bit position, A, and label
 may be expressions.

 Note that not all instructions are available with every pro-
 cessor type. Not all addressing modes are valid with every in-
 struction, refer to the AVR technical data for valid
 instructions and modes.

 ASAVR ASSEMBLER PAGE BA-6
 AVR INSTRUCTION SET

 BA.3.1 AVR Arithmetic and Logical Instructions

 add Rd,Rs adc Rd,Rs
 adiw Rd,#data sub Rd,Rs
 subi Rd,#data sbc Rd,Rs
 sbci Rd,#data sbiw Rd,#data
 and Rd,Rs andi Rd,#data
 or Rd,Rs ori Rd,#data
 cp Rd,Rs eor Rd,Rs
 cpi Rd,#data cpc Rd,Rs
 cbr Rd,#data sbr Rd,#data
 clr Rd com Rd
 dec Rd inc Rd
 neg Rd ser Rd
 tst Rd
 mul Rd,Rs fmul Rd,Rs
 muls Rd,Rs fmuls Rd,Rs
 mulsu Rd,Rs fmulsu Rd,Rs

 BA.3.2 AVR Bit and Bit-Test Instructions

 lsl Rd lsr Rd
 rol Rd ror Rd
 asr Rd swap Rd
 bset b bclr b
 sbi A,b cbi A,b
 bst Rs,b bld Rd,b
 sec sez
 sen sev
 ses seh
 set sei
 clc clz
 cln clv
 cls clh
 clt cli
 nop sleep
 wdr

 ASAVR ASSEMBLER PAGE BA-7
 AVR INSTRUCTION SET

 BA.3.3 AVR Skip on Test Instructions

 cpse Rd,Rs
 sbrc Rs,b sbrs Rs,b
 sbic A,b sbis A,b

 BA.3.4 AVR Jump/Call/Return Instructions

 jmp addr rjmp addr
 ijmp eijmp
 call addr rcall addr
 icall eicall
 ret reti

 BA.3.5 AVR Short Branch Instructions

 brcc label brcs label
 breq label brge label
 brhc label brhs label
 brid label brie label
 brlo label brlt label
 brmi label brne label
 brpl label brsh label
 brtc label brts label
 brvc label brvs label

 BA.3.6 AVR Short Branch Instructions with Bit Test

 brbc b,label brbs b,label

 BA.3.7 AVR Data Transfer Instructions

 mov Rd,Rs movw Rd,Rs
 ldi Rd,#data
 ld [] st []
 ldd [] std []
 lds Rd,addr sts addr,Rs
 lpm [] elpm []
 spm
 push Rs pop Rd
 in Rd,A out A,Rs

 APPENDIX BB

 ASEZ80 ASSEMBLER

 BB.1 ACKNOWLEDGMENT

 Thanks to Patrick Head for his contribution of the ASEZ80 cross
 assembler.

 Patrick Head

 patrick at phead dot net

 BB.2 PROCESSOR SPECIFIC DIRECTIVES

 The ASEZ80 assembler is a port of the ASZ80 assembler. This
 assembler can process EZ80 code in Z80 and ADL modes in any com-
 bination within the source file. The following processor
 specific assembler directives specify which mode the assembler
 is to process the assembler source code. The default mode of
 the assembler is Z80.

 ASEZ80 ASSEMBLER PAGE BB-2
 PROCESSOR SPECIFIC DIRECTIVES

 BB.2.1 .z80 Directive

 Format:

 .z80 (value)

 The .z80 directive without an argument selects the 16-bit Z80
 compatible mode of the EZ80 processor. The .z80 directive with
 the optional argument may be used to select the Z80 16-Bit mode
 (value != 0) or the EZ80 24-bit mode (value == 0). Mnemonics
 not allowed in the selected mode will generate <m> (mode) and/or
 <a> (addressing) errors.

 BB.2.2 .adl Directive

 Format:

 .adl (value)

 The .adl directive without an argument selects the 24-bit EZ80
 mode of the EZ80 processor. The .adl directive with the op-
 tional argument may be used to select the EZ80 24-Bit mode
 (value != 0) or the Z80 16-bit mode (value == 0). Mnemonics not
 allowed in the selected mode will generate <m> (mode) and/or <a>
 (addressing) errors.

 BB.2.3 .msb Directive

 Format:

 .msb n

 The assembler operator '>' selects the upper byte (MSB) when
 included in an assembler instruction. The normal assembler mode
 is to select bits <15:8> as the MSB. The .msb directive allows
 the programmer to specify a particular byte as the 'MSB' when
 the address space is larger than 16-bits.

 For a 24-bit EZ80 address the assembler directive .msb n con-
 figures the assembler to select a particular byte as MSB. Given
 a 24-bit address of Mmn (M is <23:16>, m is <15:8>, and n is
 <7:0>) the following examples show how to select a particular
 address byte:

 .msb 1 ;select byte 1 of address
 <M(2):m(1):n(0)>

 ASEZ80 ASSEMBLER PAGE BB-3
 PROCESSOR SPECIFIC DIRECTIVES

 LD A,>Mmn ;byte m <15:8> ==>> A
 ...

 .msb 2 ;select byte 2 of address
 <M(2):m(1):n(0)>
 LD A,>Mmn ;byte M <23:16> ==>> A
 LD MB,A ;place in MBASE register

 ASEZ80 ASSEMBLER PAGE BB-4
 PROCESSOR SPECIFIC DIRECTIVES

 BB.3 EZ80 ADDRESSING AND INSTRUCTIONS

 BB.3.1 Instruction Symbols

 b Bit select
 (000 = bit 0, 001 = bit 1,
 010 = bit 2, 011 = bit 3,
 100 = bit 4, 101 = bit 5,
 110 = bit 6, 111 = bit 7)
 cc condition code C, NC, Z, NZ, P, M, PE, PO
 test of single bit in FLAGS register
 cc' condition code C, NC, Z, NZ
 test of single bit in FLAGS register
 d an 8-bit two's complement displacement with
 value from -128 to 127.
 I Interrupt Page Address Register
 ir or ir' 8-bit CPU register IXH(IX:[15:8]),
 IXL (IX:[7:0], IYH (IY:[15:8]), IYL (IY:[7:0])
 IX/Y CPU register IX or IY
 (IX/Y+d) A location in memory with address formed by the
 sum of the contents of the Index Register, IX
 or IY, and the two's complement displacement d.
 MB Z80 Memory Mode Base Address Register
 Mmn A 24-bit immediate data value
 (Mmn) A 24-bit value indicating a location in
 memory at this address.
 mn A 16-bit immediate data value
 (mn) A 16-bit value indicating a location in
 memory at this address.
 n 8-bit immediate data value
 R Refresh Counter Register
 r or r' 8-bit CPU register A, B, C, D, E, H, L
 rr 16 or 24-bit CPU register BC, DE, HL
 rxy 16 or 24-bit CPU register BC, DE, HL, IX, IY
 SP Stack Pointer, Can indicate either the
 StackPointer Short register (SPS) or the
 StackPointer Long register (SPL).

 ASEZ80 ASSEMBLER PAGE BB-5
 EZ80 ADDRESSING AND INSTRUCTIONS

 C - carry bit set
 NC - carry bit clear
 Z - zero bit set
 NZ - zero bit clear
 M - sign bit set
 P - sign bit clear
 PE - parity even
 PO - parity odd

 The terms b, d, Mmn, mn, n, and ss may all be expressions.

 ASEZ80 ASSEMBLER PAGE BB-6
 EZ80 ADDRESSING AND INSTRUCTIONS

 BB.3.2 EZ80 Instructions

 The following list of instructions (with explicit addressing
 modes) are available for the EZ80.

 ADC A,(HL) DEC (HL) INI
 ADC A,ir DEC ir INI2
 ADC A,(IX/Y+d) DEC IX/Y INI2R
 ADC A,n DEC (IX/Y+d)
 ADC A,r DEC r INIM
 ADC HL,rr DEC rr INIMR
 ADC HL,SP DEC SP
 INIR
 ADD A,(HL) DI INIRX
 ADD A,ir
 ADD A,(IX/Y+d) DJNZ d JP cc,Mmn
 ADD A,n JP HL
 ADD A,r EI JP IX/Y
 ADD HL,rr JP Mmn
 ADD HL,SP EX AF,AF'
 ADD IX/Y,rxy EX DE,HL JR cc',d
 ADD IX/Y,SP EX (SP),HL JR d
 EX (SP),IX/Y
 AND A,HL LD A,I
 AND A,ir EXX LD A,(IX/Y+d)
 AND A,(IX/Y+d) LD A,MB
 AND A,n HALT LD A,(Mmn)
 AND A,r LD A,R
 IM n LD A,(rr)
 BIT b,(HL) IM A,(n) LD (HL),IX/Y
 BIT b, (IX/Y+d) IN r,(BC) LD (HL),n
 BIT b,r LD (HL),r
 IN0 r,(n) LD (HL),rr
 CALL cc,Mmn LD IY,(SP+n)
 CALL mn INC (HL) LD I,HL
 INC ir LD I,A
 CP A,(HL) INC IX/Y LD ir,ir'
 CP A,ir INC (IX/Y+d) LD ir,n
 CP A,(IX/Y+d) INC r LD ir,r
 CP A,r INC SP LD IX/Y,(HL)
 LD IX/Y,(IX/Y+d)
 CPD IND LD IX/Y,Mmn
 CPDR IND2 LD IX/Y,(Mmn)
 IND2R LD (IX/Y+d),IX/Y
 CPI LD (IX/Y+d),n
 CPIR INDM LD (IX/Y+d),r
 INDMR LD (IX/Y+d),rr
 CPL LD MB,A

 ASEZ80 ASSEMBLER PAGE BB-7
 EZ80 ADDRESSING AND INSTRUCTIONS

 INDR LD (Mmn),A
 DAA INDRX LD (Mmn),IX/Y

 ASEZ80 ASSEMBLER PAGE BB-8
 EZ80 ADDRESSING AND INSTRUCTIONS

 LD (Mmn),rr OTDR RL r
 LD (Mmn),SP OTDRX
 LD R,A RLA
 LD r,(HL) OTI2R
 LD r,ir RLC (HL)
 LD r,(IX/Y+d) OTIM RLC (IX/Y+d)
 LD r,n OTIMR RLC r
 LD r,r'
 LD rr,(HL) OTIR RLCA
 LD rr,(IX/Y+d) OTIRX
 LD rr,Mmn RLD
 LD rr,(Mmn) OUT (BC),r
 LD (rr),A OUT (C),r RR (HL)
 LD SP,HL OUT (n),A RR (IX/Y+d)
 LD SP,IX/Y RR r
 LD SP,Mmn OUTD
 LD SP,(Mmn) OUTD2 RRA

 LDD OUTI RRC (HL)
 LDDR OUTI2 RRC (IX/Y+d)
 RL (IX+d) RRC r
 LDI RL (IY+d
 LDIR RRCA
 PEA IX+d
 LEA IX/Y,IX+d PEA IY+d RRD
 LEA IX/Y,IY+d
 LEA rr,IX+d POP AF RSMIX
 LEA rr,IY+d POP IX/Y
 POP rr RST n
 MLT rr
 MLT SP PUSH AF SBC A,(HL)
 PUSH IX/Y SBC A,ir
 NEG PUSH rr SBC A,(IX/Y+d)
 SBC A,n
 NOP RES b,(IX/Y+d) SBC A,r
 RES b,r SBC HL,rr
 OR A,(HL) SBC HL,SP
 OR A,ir RET
 OR A,(IX/Y+d) RET cc SCF
 OR A,n
 OR A,r RETI SET b,(HL)
 SET b,(IX/Y+d)
 OTD2R RETN SET b,r

 OTDM RL (HL) SLA (HL)
 OTDMR RL (IX/Y+d) SLA (IX/Y+d)

 ASEZ80 ASSEMBLER PAGE BB-9
 EZ80 ADDRESSING AND INSTRUCTIONS

 SLA r STMIX TSTIO n

 SLP SUB A,(HL) XOR A,(HL)
 SUB A,ir XOR A,ir
 SRA (HL) SUB A,(IX/Y+d) XOR A,(IX/Y+d)
 SRA (IX/Y+d) SUB A,n XOR A,n
 SRA r SUB A,r XOR A,r

 SRL (HL) TST A,(HL)
 SRL (IX/Y+d) TST A,n
 SRL r TST A,r

 The accumulator 'A' argument is optional in all of the fol-
 lowing instructions:

 ADC A,... CP A,... SUB A,...
 ADD A,... OR A,... TST A,...
 AND A,... SBC A,... XOR A,...

 The following tables, organized by instruction type, lists
 all possible EZ80/Z80 mnemonic extensions recognized by the
 ASEZ80 assembler. The designation [] refers to a required ad-
 dressing mode argument shown in the table above. The allowed
 mnemonic suffixes are denoted within the enclosing delimiters
 (). Mnemonics specified with illegal or unrecognized suffixs
 will be flagged with <q> or <a> errors.

 BB.3.3 Arithmetic Instructions

 adc (.l, .s) [],[]
 add (.l, .s) [],[]
 cp (.l, .s) [],[]
 daa
 dec (.l, .s) []
 inc (.l, .s) []
 mlt (.l, .s) []
 neg
 sbc (.l, .s) [],[]
 sub (.l, .s) [],[]

 ASEZ80 ASSEMBLER PAGE BB-10
 EZ80 ADDRESSING AND INSTRUCTIONS

 BB.3.4 Bit Manipulation Instructions

 bit (.l, .s) [],[]
 res (.l, .s) [],[]
 set (.l, .s) [],[]

 BB.3.5 Block Transfer and Compare Instructions

 cpd (.l, .s) cpdr (.l, .s)
 cpi (.l, .s) cpir (.l, .s)
 ldd (.l, .s) lddr (.l, .s)
 ldi (.l, .s) ldir (.l, .s)

 BB.3.6 Exchange Instructions

 ex (.l, .s) [],[]
 exx

 BB.3.7 Input/Output Instructions

 in [],[] in0 [],[]
 ind (.l, .s) indr (.l, .s)
 indx (.l, .s)
 ind2 (.l, .s) ind2r (.l, .s)
 indm (.l, .s) indmr (.l, .s)
 ini (.l, .s) inir (.l, .s)
 inim (.l, .s) inimr (.l, .s)
 otdm (.l, .s) otdmr (.l, .s)
 otdrx (.l, .s)
 otim (.l, .s) otimr (.l, .s)
 otirx (.l, .s)
 out (.l, .s) [],[]
 out0 (.l, .s) [],[]
 outd (.l, .s) otdr (.l, .s)
 outd2 (.l, .s) otdr2 (.l, .s)
 outi (.l, .s) otir (.l, .s)
 outi2 (.l, .s) oti2r (.l, .s)
 tstio []

 ASEZ80 ASSEMBLER PAGE BB-11
 EZ80 ADDRESSING AND INSTRUCTIONS

 BB.3.8 Load Instructions

 ld (.l, .s, .il, .is, .lil, .sis) [],[]
 lea (.l, .s) [] pea (.l, .s) []
 pop (.l, .s) [] push (.l, .s) []

 BB.3.9 Logical Instructions

 and (.l, .s) [],[]
 cpl (.l, .s)
 or (.l, .s) [],[]
 tst (.l, .s) [],[]
 xor (.l, .s) [],[]

 BB.3.10 Processor Control Instructions

 ccf di ei
 halt im nop
 rsmix stmix
 scf slp

 BB.3.11 Program Flow Instructions

 call (.il, .is) []
 call (.il, .is) CC,[]
 djnz []
 jp (.l, .s, .lil, .sis) []
 jp (.l, .s, .lil, .sis) CC,[]
 jr []
 jr CC,[]
 ret (.l)
 ret (.l) CC
 reti (.l)
 retn (.l)
 rst (.l, .s) []

 ASEZ80 ASSEMBLER PAGE BB-12
 EZ80 ADDRESSING AND INSTRUCTIONS

 BB.3.12 Shift and Rotate Instructions

 rl (.l, .s) [] rla
 rlc (.l, .s) [] rlca
 rld rrd
 rr (.l, .s) [] rra
 rrc (.1, .s) [] rrca
 sla (.l, .s) []
 sra (.l, .s) []
 srl (.l, .s) []

 APPENDIX BC

 ASF2MC8 ASSEMBLER

 BC.1 PROCESSOR SPECIFIC DIRECTIVES

 The ASF2MC8 assembler supports the F2MC8L and F2MC8FX proces-
 sor cores.

 BC.1.1 .F2MC8L Directive

 Format:

 .F2MC8L

 The .F2MC8L directive selects the F2MC8L processor cycle counts
 to be listed. This is the default selection if no processor
 directive is specified in the source assembly file.

 BC.1.2 .F2MC8FX Directive

 Format:

 .F2MC8FX

 The .F2MC8FX directive selects the F2MC8FX processor cycle
 counts to be listed. .F2MC8L is the default selection if no
 processor directive is specified in the source assembly file.

 ASF2MC8 ASSEMBLER PAGE BC-2
 PROCESSOR SPECIFIC DIRECTIVES

 BC.1.3 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The default value is 0 which cor-
 responds to the default processor type. The following table
 lists the processor types and associated values for the ASF2MC8
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .F2MC8L 0
 .F2MC8FX 1

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 BC.2 F2MC8L/F2MC8FX REGISTERS

 The following is a list of register designations recognized
 by the ASF2MC8 assembler:

 ASF2MC8 ASSEMBLER PAGE BC-3
 F2MC8L/F2MC8FX REGISTERS

 pc - Program Counter

 a - Accumulator

 t - Temporary Accumulator

 ix - Index Register

 ep - Extra Pointer

 sp - Stack Pointer

 ps - Program Status

 r0,r1,r2,r3, - Memory Registers
 r4,r5,r6,r7 32 banks of
 8 registers each

 BC.3 F2MC8L/F2MC8FX INSTRUCTION SET

 The following list specifies the format for each addressing
 mode supported by ASF2MC8:

 ASF2MC8 ASSEMBLER PAGE BC-4
 F2MC8L/F2MC8FX INSTRUCTION SET

 #data immediate data
 byte or word data

 *dir direct page addressing

 *dir:b bit addressing to a
 direct page address

 ext extended addressing

 a,t register addressing
 pc,sp,ix,ep

 @a accumulator indexed

 @ix+d indexed addressing
 plus offset

 @ix indexed addressing
 with a zero offset

 @ep pointer addressing

 r General-purpose registers

 label call/jmp/branch label

 The terms data, dir, ext, b, d, and label may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the F2MC8L/F2MC8FX technical data for valid
 modes.

 The following tables list all F2MC8L/F2MC8FX mnemonics recog-
 nized by the ASF2MC8 assembler. The designation [] refers to a
 required addressing mode argument.

 ASF2MC8 ASSEMBLER PAGE BC-5
 F2MC8L/F2MC8FX INSTRUCTION SET

 BC.3.1 Transfer Instructions

 mov [],[] movw [],[]
 xch [],[] xchw [],[]
 clrb [] setb []
 swap []

 BC.3.2 Operation Instructions

 addc a(,[]) addcw a
 subc a(,[]) subcw a
 inc r incw []
 dec r decw []
 mulu a divu a
 and a(,[]) andw a
 cmp a(,[]) cmpw a
 or a(,[]) orw a
 xor a(,[]) xorw a
 rolc a rorc a
 daa das

 BC.3.3 Branch/Jump/Call Instructions

 bz label bew label
 bnz label bne label
 bc label blo label
 bnc label bhs label
 bn label bp label
 blt label bge label
 bbc *dir:b,label bbs *dir:b,label
 jmp [] call label
 callv #data xchw a,pc
 ret reti

 BC.3.4 Other Instructions

 pushw [] popw []
 nop
 clrc setc
 clri seti

 APPENDIX BD

 ASF8 ASSEMBLER

 The AS8 assembler supports the F8 and 3870 processor cores.

 ASF8 ASSEMBLER Page BD-2

 BD.1 F8 REGISTERS

 The following is a list of register designations recognized
 by the ASF8 assembler:

 ASF8 ASSEMBLER PAGE BD-3
 F8 REGISTERS

 r0-r11 - Registers

 j - Scratch Pad Register r9

 hu - MSB of register H the
 Data Counter Buffer Register
 Scratch Pad Register r10
 hl - LSB of register H the
 Data Counter Buffer Register
 Scratch Pad Register r11

 ku - MSB of register K the
 Stack Buffer Register
 kl - LSB of register K the
 Stack Buffer Register

 qu - MSB of register Q a
 Buffer Register for the
 Data Counter or Program Counter
 ql - LSB of register Q a
 Buffer Register for the
 Data Counter or Program Counter

 a - Accumulator

 is - Scratch Pad Address Register (ISAR)

 w - Status Register

 s - Register Addressed
 by is (unchanged)

 i - Register Addressed
 by is (incremented)

 d - Register Addressed
 by is (decremented)

 pc0 - Program Counter
 or p0, pc

 pc1 - Program Counter Buffer or
 or p1, p Stack Register

 dc0 - Data Counter
 or d0, dc

 ASF8 ASSEMBLER PAGE BD-4
 F8 INSTRUCTION SET

 BD.2 F8 INSTRUCTION SET

 The following list specifies the format for each addressing
 mode supported by ASF8:

 #nibble immediate 4-Bit data
 #byte immediate 8-Bit data
 #word immediate 16-Bit data

 #t3 3-Bit test condition
 [Zero Carry Sign]

 #t4 4-Bit test condition
 [Overflow Zero Carry Sign]

 r register r0-r11 addressing and
 indirect addressing s, i, and d
 j is equivalent to r9
 hu (MSB of h) is equivalent to r10
 hl (LSB of h) is equivalent to r11

 ku and kl MSB and LSB of k register

 qu and ql MSB and LSB of q register

 h, k, or q 16-Bit registers
 p0, pc0, or pc
 p1 or p
 d0, dc0, or dc

 w status register

 is Indirect Scratchpad Address Register

 label call/jmp/branch label

 The terms nibble, byte, word, t3, t4, and label may all be ex-
 pressions.

 The following tables list all F8 mnemonics recognized by the
 ASF8 assembler.

 ASF8 ASSEMBLER PAGE BD-5
 F8 INSTRUCTION SET

 BD.2.1 Accumulator Group Instructions

 lnk ai #byte
 ni #byte clr
 ci #byte com
 xi #byte inc
 li #byte lis #nibble
 oi #byte sl 1
 sl 4 sr 1
 sr 4

 BD.2.2 Branch Instructions

 bc label bp label
 bz label bt #t3,label
 bm label bnc label
 bno label bnz label
 bf #t4,label br7 label
 br label jmp label

 BD.2.3 Memory Reference Instructions

 am amd
 nm cm
 xm lm
 om st

 BD.2.4 Address Register Instructions

 adc pk
 pi #word xdc
 lr dc,q lr dc,h
 dci #word lr p0,q
 lr p,k pop
 lr q,dc lr h,dc
 lr k,p

 ASF8 ASSEMBLER PAGE BD-6
 F8 INSTRUCTION SET

 BD.2.5 Scratchpad Register Instructions

 as r asd r
 ds r
 lr a,r
 lr a,ku lr a,kl
 lr a,qu lr a,ql
 lr r,a
 lr ku,a lr kl,a
 lr qu,a lr ql,a
 ns r xs r

 BD.2.6 Miscellaneous Instructions

 di ei
 in #byte ins #nibble
 out #byte outs #nibble
 lr is,a lr a,is
 lr w,j lr j,w
 lisl #0-#7 lisu #0-#7
 nop

 APPENDIX BE

 ASGB ASSEMBLER

 BE.1 ACKNOWLEDGEMENT

 Thanks to Roger Ivie for his contribution of the ASGB cross
 assembler.

 Roger Ivie
 ivie at cc dot usu dot edu

 BE.2 INTRODUCTION

 The Gameboy uses an 8-bit processor which is closely related
 to the 8080. It is usually described as a modified Z80, but may
 be more closely understood as an enhanced 8080; it has the 8080
 register set and many, but not all, enhanced Z80 instructions.
 However, even this is not accurate, for the Gameboy also lacks
 some basic 8080 instructions (most annoyingly SHLD and LHLD).
 ASGB is based on ASZ80 and therefore uses the Z80 mnemonic set.

 ASGB ASSEMBLER PAGE BE-2
 GAMEBOY REGISTER SET AND CONDITIONS

 BE.3 GAMEBOY REGISTER SET AND CONDITIONS

 The following is a complete list of register designations and
 condition mnemonics:

 byte registers - a,b,c,d,e,h,l
 register pairs - af, bc, de, hl
 word registers - pc, sp

 C - carry bit set
 NC - carry bit clear
 NZ - zero bit clear
 Z - zero bit set

 BE.4 GAMEBOY INSTRUCTION SET

 The following tables list all Gameboy mnemnoics recognized by
 the ASGB assembler. The designation [] refers to a required ad-
 dressing mode argument. The following list specifies the format
 for each addressing mode supported by ASGB:

 #data immediate data
 byte or word data

 n byte value

 rg a byte register
 a,b,c,d,e,h,l

 rp a register pair or 16-bit register
 bc,de,hl

 (hl) implied addressing or
 register indirect addressing

 (label) direct addressing

 label call/jmp/jr label

 The terms data, dir, and ext may all be expression. The term
 dir is not allowed to be an external reference.

 Note that not all addressing modes are valid with every in-
 struction. Although official information is not, as far as I

 ASGB ASSEMBLER PAGE BE-3
 GAMEBOY INSTRUCTION SET

 know, publically available for the Gameboy processor, many
 unofficial sources are available on the internet.

 BE.4.1 .tile Directive

 Format:

 .tile /string/ or

 .tile ^/string/

 where: string is a string of ascii characters taken from the
 set ' ', '.', '+', '*', '0', '1', '2', and '3'.
 The string must be a multiple of eight
 characters long.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .tile
 directive will give the <q> error.

 The Gameboy displays information on the screen using a pro-
 grammable character set (referred to as "tiles" among Gameboy
 developers). The ASGB cross assembler has a processor-specific
 assembler directive to aid in the creation of the game's
 character set.

 Each character is created from an 8x8 grid of pixels, each
 pixel of which is composed of two bits. The .tile directive ac-
 cepts a single string argument which is processed to create the
 byte values corresponding to the lines of pixels in the
 character. The string argument must be some multiple of 8
 characters long, and be one of these characters:

 ' ' or '0' - for the pixel value 00
 '.' or '1' - for the pixel value 01
 '+' or '2' - for the pixel value 10
 '*' or '3' - for the pixel value 11

 The .tile directive processes each 8-character group of its
 string argument to create the two-byte value corresponding to
 that line of pixels. The example in the popular extant
 literature could be done using ASGB like this:

 ASGB ASSEMBLER PAGE BE-4
 GAMEBOY INSTRUCTION SET

 0000 7C 7C 1 .tile " ***** "
 0002 00 C6 2 .tile "++ ++ "
 0004 C6 00 3 .tile ".. .. "
 0006 00 FE 4 .tile "+++++++ "
 0008 C6 C6 5 .tile "** ** "
 000A 00 C6 6 .tile "++ ++ "
 000C C6 00 7 .tile ".. .. "
 000E 00 00 8 .tile " "

 Or, using the synonym character set, as:

 0010 7C 7C 10 .tile "03333300"
 0012 00 C6 11 .tile "22000220"
 0014 C6 00 12 .tile "11000110"
 0016 00 FE 13 .tile "22222220"
 0018 C6 C6 14 .tile "33000330"
 001A 00 C6 15 .tile "22000220"
 001C C6 00 16 .tile "11000110"
 001E 00 00 17 .tile "00000000"

 Since .tile is perfectly willing to assemble multiple lines
 of a character at once (as long as it is given complete rows of
 pixels), it could even be done as:

 .tile " ***** ++ ++ +++++++ "
 .tile "** ** ++ ++ "

 BE.4.2 Potentially Controversial Mnemonic Selection

 Although the Gameboy processor is based on the Z80, it does
 include some features which are not present in the Z80. The Z80
 mnemonic set is not sufficient to describe these additional
 operations; mnemonics must be created for the new operations.
 The mnemonics ASGB uses are not the same as those used by other
 publically-available Gameboy assemblers.

 ASGB ASSEMBLER PAGE BE-5
 GAMEBOY INSTRUCTION SET

 BE.4.2.1 Auto-Indexing Loads -

 The Gameboy provides instructions to load or store the ac-
 cumulator indirectly via HL and then subsequently increment or
 decrement HL. ASGB uses the mnemonic 'ldd' for the instructions
 which decrement HL and 'ldi' for the instructions which incre-
 ment HL. Because the Gameboy lacks the Z80's block moves, the
 mnemonics are not otherwise needed by ASGB.

 ldd a,(hl) ldd (hl),a
 ldi a,(hl) ldi (hl),a

 BE.4.2.2 Input and Output Operations -

 The Gameboy replaces the Z80's separate address space for
 I/O with a mechanism similar to the zero page addressing of pro-
 cessors such as the 6800 or 6502. All I/O registers in the
 Gameboy reside in the address range between 0xff00 and 0xffff.
 The Gameboy adds special instructions to load and store the ac-
 cumulator from and into this page of memory. The instructions
 are analogous to the Z80's in and out instructions and ASGB re-
 tains the 'in' and 'out' mnemonics for them.

 in a,(n) out (n),a
 in a,(c) out (c),a

 From ASGB's perspective, the RAM available from 0xff80
 through 0xffff is composed of unused I/O locations rather than
 direct-page RAM.

 BE.4.2.3 The 'stop' Instruction -

 The publically-available documentation for the Gameboy
 lists the 'stop' instruction as the two-byte instruction 10 00,
 and the other freely-available Gameboy assemblers assemble it in
 that manner. As far as I can tell, the only rationale for this
 is that the corresponding Z80 instruction ('djnz label') is a
 two-byte instruction. ASGB assembles 'stop' as the one-byte in-
 struction 10.

 ASGB ASSEMBLER PAGE BE-6
 GAMEBOY INSTRUCTION SET

 BE.4.3 Inherent Instructions

 ccf cpl
 daa di
 ei nop
 halt rla
 rlca rra
 rrca scf
 reti stop
 swap

 BE.4.4 Implicit Operand Instructions

 adc a,[] adc []
 add a,[] add []
 and a,[] and []
 cp a,[] cp []
 dec a,[] dec []
 inc a,[] inc []
 or a,[] or []
 rl a,[] rl []
 rlc a,[] rlc []
 rr a,[] rr []
 rrc a,[] rrc []
 sbc a,[] sbc []
 sla a,[] sla []
 sra a,[] sra []
 srl a,[] srl []
 sub a,[] sub []
 xor a,[] xor []

 BE.4.5 Load Instructions

 ld rg,[] ld [],rg
 ld (bc),a ld a,(bc)
 ld (de),a ld a,(de)
 ld (label),a ld a,(label)
 ld (label),sp ld rp,#data
 ld sp,hl ld hl,sp

 ldd a,(hl) ldd (hl),a
 ldi a,(hl) ldi (hl),a

 ASGB ASSEMBLER PAGE BE-7
 GAMEBOY INSTRUCTION SET

 BE.4.6 Call/Return Instructions

 call C,label ret C
 call NC,label ret NC
 call Z,label ret Z
 call NZ,label ret NZ
 call label ret

 rst n

 BE.4.7 Jump Instructions

 jp C,label jp NC,label
 jp Z,label jp NZ,label

 jp (hl) jp label

 jr C,label jr NC,label
 jr Z,label jr NZ,label
 jr label

 BE.4.8 Bit Manipulation Instructions

 bit n,[]
 res n,[]
 set n,[]

 BE.4.9 Input and Output Instructions

 in a,(n) in a,(c)
 out (n),a out (c),a

 ASGB ASSEMBLER PAGE BE-8
 GAMEBOY INSTRUCTION SET

 BE.4.10 Register Pair Instructions

 add hl,rp add hl,sp
 add sp,#data

 push rp pop rp

 APPENDIX BF

 ASH8 ASSEMBLER

 BF.1 H8/3XX REGISTER SET

 The following is a list of the H8 registers used by ASH8:

 r0 - r7,sp 16-bit accumulators
 r0L - r7L,spL 8-bit accumulators
 r0H - r7H,spH 8-bit accumulators
 spL,spH,sp stack pointers
 ccr condition code

 BF.2 H8/3XX INSTRUCTION SET

 The following tables list all H8/3xx mnemonics recognized
 by the ASH8 assembler. The designation [] refers to a required
 addressing mode argument. The following list specifies the
 format for each addressing mode supported by ASH8:

 #xx:3 immediate data (3 bit)
 #xx:8 immediate data (8 bit)
 #xx:16 immediate data (16 bit)

 *dir direct page addressing
 (see .setdp directive)
 0xFF00 <= dir <= 0xFFFF

 label branch label

 rn registers (16 bit)
 r0-r7,sp

 ASH8 ASSEMBLER PAGE BF-2
 H8/3XX INSTRUCTION SET

 rnB registers (8 bit)
 r0H-r7H,r0L-r7L,spH,spL

 ccr condition code register

 @rn register indirect

 @-rn register indirect (auto pre-decrement)

 @rn+ register indirect (auto post-increment)

 @[offset,rn] register indirect, 16-bit displacement

 @@offset memory indirect, (8-bit address)

 ext extended addressing (16-bit)

 The terms data, dir, label, offset, and ext may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the H8/3xx technical data for valid modes.

 BF.2.1 Inherent Instructions

 eepmov
 nop
 sleep
 rte
 rts

 ASH8 ASSEMBLER PAGE BF-3
 H8/3XX INSTRUCTION SET

 BF.2.2 Branch Instructions

 bcc label bcs label
 beq label bf label
 bge label bgt label
 bhi label bhis label
 bhs label ble label
 blo label blos label
 bls label blt label
 bmi label bne label
 bpl label bra label
 brn label bt label
 bvc label bvs label
 bsr label

 ASH8 ASSEMBLER PAGE BF-4
 H8/3XX INSTRUCTION SET

 BF.2.3 Single Operand Instructions

 Free Form

 daa rnB das rnB

 dec rnB inc rnB

 neg rnB not rnB

 rotxl rnB rotxr rnB

 rotl rnB rotr rnB

 shal rnB shar rnB

 shll rnB shlr rnB

 push rn pop rn

 Byte / Word Form

 daa.b rnB das.b rnB

 dec.b rnB inc.b rnB

 neg.b rnB not.b rnB

 rotxl.b rnB rotxr.b rnB

 rotl.b rnB rotr.b rnB

 shal.b rnB shar.b rnB

 shll.b rnB shlr.b rnB

 push.w rn pop.w rn

 ASH8 ASSEMBLER PAGE BF-5
 H8/3XX INSTRUCTION SET

 BF.2.4 Double Operand Instructions

 Free Form

 add rnB,rnB add #xx:8,rnB
 add rn,rn
 adds #1,rn adds #2,rn
 addx rnB,rnB addx #xx:8,rnB

 cmp rnB,rnB cmp #xx:8,rnB
 cmp rn,rn

 sub rnB,rnB
 sub rn,rn
 subs #1,rn subs #2,rn
 subx rnB,rnB subx #xx:8,rnB

 and rnB,rnB and #xx:8,rnB
 and #xx:8,ccr

 or rnB,rnB or #xx:8,rnB
 or #xx:8,ccr

 xor rnB,rnB xor #xx:8,rnB
 xor #xx:8,ccr

 Byte / Word Form

 add.b rnB,rnB add.b #xx:8,rnB
 add.w rn,rn

 cmp.b rnB,rnB cmp.b #xx:8,rnB
 cmp.w rn,rn

 sub.b rnB,rnB
 sub.w rn,rn

 addx.b rnB,rnB addx.b #xx:8,rnB

 and.b rnB,rnB and.b #xx:8,rnB
 and.b #xx:8,ccr

 or.b rnB,rnB or.b #xx:8,rnB
 or.b #xx:8,ccr

 subx.b rnB,rnB subx.b #xx:8,rnB

 xor.b rnB,rnB xor.b #xx:8,rnB

 ASH8 ASSEMBLER PAGE BF-6
 H8/3XX INSTRUCTION SET

 xor.b #xx:8,ccr

 ASH8 ASSEMBLER PAGE BF-7
 H8/3XX INSTRUCTION SET

 BF.2.5 Mov Instructions

 Free Form

 mov rnB,rnB mov rn,rn
 mov #xx:8,rnB mov #xx:16,rn
 mov @rn,rnB mov @rn,rn
 mov @[offset,rn],rnB mov @[offset,rn],rn
 mov @rn+,rnB mov @rn+,rn
 mov @dir,rnB
 mov dir,rnB
 mov *@dir,rnB
 mov *dir,rnB
 mov @label,rnB mov @label,rn
 mov label,rnB mov label,rn
 mov rnB,@rn mov rn,@rn
 mov rnB,@[offset,rn] mov rn,@[offset,rn]
 mov rnB,@-rn mov rn,@-rn
 mov rnB,@dir
 mov rnB,dir
 mov rnB,*@dir
 mov rnB,*dir
 mov rnB,@label mov rn,@label
 mov rnB,label mov rn,label

 Byte / Word Form

 mov.b rnB,rnB mov.w rn,rn
 mov.b #xx:8,rnB mov.w #xx:16,rn
 mov.b @rn,rnB mov.w @rn,rn
 mov.b @[offset,rn],rnB mov.w @[offset,rn],rn
 mov.b @rn+,rnB mov.w @rn+,rn
 mov.b @dir,rnB
 mov.b dir,rnB
 mov.b *@dir,rnB
 mov.b *dir,rnB
 mov.b @label,rnB mov.w @label,rn
 mov.b label,rnB mov.w label,rn
 mov.b rnB,@rn mov.w rn,@rn
 mov.b rnB,@[offset,rn] mov.w rn,@[offset,rn]
 mov.b rnB,@-rn mov.w rn,@-rn
 mov.b rnB,@dir
 mov.b rnB,dir
 mov.b rnB,*@dir
 mov.b rnB,*dir
 mov.b rnB,@label mov.w rn,@label
 mov.b rnB,label mov.w rn,label

 ASH8 ASSEMBLER PAGE BF-8
 H8/3XX INSTRUCTION SET

 BF.2.6 Bit Manipulation Instructions

 bld #xx:3,rnB bld #xx:3,@rn
 bld #xx:3,@dir bld #xx:3,dir
 bld #xx:3,*@dir bld #xx:3,*dir

 bild #xx:3,rnB bild #xx:3,@rn
 bild #xx:3,@dir bild #xx:3,dir
 bild #xx:3,*@dir bild #xx:3,*dir

 bst #xx:3,rnB bst #xx:3,@rn
 bst #xx:3,@dir bst #xx:3,dir
 bst #xx:3,*@dir bst #xx:3,*dir

 bist #xx:3,rnB bist #xx:3,@rn
 bist #xx:3,@dir bist #xx:3,dir
 bist #xx:3,*@dir bist #xx:3,*dir

 band #xx:3,rnB band #xx:3,@rn
 band #xx:3,@dir band #xx:3,dir
 band #xx:3,*@dir band #xx:3,*dir

 biand #xx:3,rnB biand #xx:3,@rn
 biand #xx:3,@dir biand #xx:3,dir
 biand #xx:3,*@dir biand #xx:3,*dir

 bor #xx:3,rnB bor #xx:3,@rn
 bor #xx:3,@dir bor #xx:3,dir
 bor #xx:3,*@dir bor #xx:3,*dir

 bior #xx:3,rnB bior #xx:3,@rn
 bior #xx:3,@dir bior #xx:3,dir
 bior #xx:3,*@dir bior #xx:3,*dir

 bxor #xx:3,rnB bxor #xx:3,@rn
 bxor #xx:3,@dir bxor #xx:3,dir
 bxor #xx:3,*@dir bxor #xx:3,*dir

 bixor #xx:3,rnB bixor #xx:3,@rn
 bixor #xx:3,@dir bixor #xx:3,dir
 bixor #xx:3,*@dir bixor #xx:3,*dir

 ASH8 ASSEMBLER PAGE BF-9
 H8/3XX INSTRUCTION SET

 BF.2.7 Extended Bit Manipulation Instructions

 bset #xx:3,rnB bset #xx:3,@rn
 bset #xx:3,@dir bset #xx:3,dir
 bset #xx:3,*@dir bset #xx:3,*dir
 bset rnB,rnB bset rnB,@rn
 bset rnB,@dir bset rnB,dir
 bset rnB,*@dir bset rnB,*dir

 bclr #xx:3,rnB bclr #xx:3,@rn
 bclr #xx:3,@dir bclr #xx:3,dir
 bclr #xx:3,*@dir bclr #xx:3,*dir
 bclr rnB,rnB bclr rnB,@rn
 bclr rnB,@dir bclr rnB,dir
 bclr rnB,*@dir bclr rnB,*dir

 bnot #xx:3,rnB bnot #xx:3,@rn
 bnot #xx:3,@dir bnot #xx:3,dir
 bnot #xx:3,*@dir bnot #xx:3,*dir
 bnot rnB,rnB bnot rnB,@rn
 bnot rnB,@dir bnot rnB,dir
 bnot rnB,*@dir bnot rnB,*dir

 btst #xx:3,rnB btst #xx:3,@rn
 btst #xx:3,@dir btst #xx:3,dir
 btst #xx:3,*@dir btst #xx:3,*dir
 btst rnB,rnB btst rnB,@rn
 btst rnB,@dir btst rnB,dir
 btst rnB,*@dir btst rnB,*dir

 BF.2.8 Condition Code Instructions

 andc #xx:8,ccr andc #xx:8
 and #xx:8,ccr and.b #xx:8,ccr

 ldc #xx:8,ccr ldc #xx:8
 ldc rnB,ccr ldc rnB

 orc #xx:8,ccr orc #xx:8
 or #xx:8,ccr or.b #xx:8,ccr

 xorc #xx:8,ccr xorc #xx:8
 xor #xx:8,ccr xor.b #xx:8,ccr

 stc ccr,rnB stc rnB

 ASH8 ASSEMBLER PAGE BF-10
 H8/3XX INSTRUCTION SET

 BF.2.9 Other Instructions

 divxu rnB,rn divxu.b rnB,rn

 mulxu rnB,rn mulxu.b rnB,rn

 movfpe @label,rnB movfpe label,rnB
 movfpe.b @label,rnB movfpe.b label,rnB

 movtpe @label,rnB movtpe label,rnB
 movtpe.b @label,rnB movtpe.b label,rnB

 BF.2.10 Jump and Jump to Subroutine Instructions

 jmp @rn jmp @@dir
 jmp @label jmp label

 jsr @rn jsr @@dir
 jsr @label jsr label

 APPENDIX BG

 ASM8C ASSEMBLER

 BG.1 M8C REGISTER SET

 The following is a list of the M8C registers used by ASM8C:

 A - Accumulator
 X - Index
 SP - Stack Pointer
 F - Flags

 BG.2 M8C ADDRESSING MODES

 The M8C instructions may have none, one, or two operands
 selected from the registers listed above or an addressing mode
 from the following list:

 expr - immediate argument
 - In the lcall, ljmp, index,
 and pc relative branching
 instructions expr is an
 address expression.
 #expr - immediate argument
 [expr] - argument at location expr
 [x+expr] - argument at location x + expr
 reg[expr] - argument at location expr
 in register space
 reg[x+expr] - argument at location x + expr
 in register space
 [[expr]++] - The value in memory at address
 expr (the indirect address)
 points to a memory location in
 RAM. The value in memory at

 ASM8C ASSEMBLER PAGE BG-2
 M8C ADDRESSING MODES

 address expr is then incremented.
 This addressing mode is used only
 by the mvi instruction and
 allows the short form [expr]
 for this addressing mode.

 BG.3 M8C INSTRUCTION SET

 The following tables list all M8C mnemonics and addressing
 modes recognized by the ASM8C assembler.

 BG.3.1 Double Operand Arithmetic Instructions

 adc a,expr
 adc a,[expr] adc [expr],a
 adc a,[x+expr] adc [x+expr],a
 adc [expr],expr adc [x+expr],expr

 add a,expr
 add a,[expr] add [expr],a
 add a,[x+expr] add [x+expr],a
 add [expr],expr add [x+expr],expr
 add sp,expr

 cmp a,expr
 cmp a,[expr]
 cmp a,[x+expr]
 cmp [expr],expr cmp [x+expr],expr

 sbb a,expr
 sbb a,[expr] sbb [expr],a
 sbb a,[x+expr] sbb [x+expr],a
 sbb [expr],expr sbb [x+expr],expr

 sub a,expr
 sub a,[expr] sub [expr],a
 sub a,[x+expr] sub [x+expr],a
 sub [expr],expr sub [x+expr],expr

 ASM8C ASSEMBLER PAGE BG-3
 M8C INSTRUCTION SET

 BG.3.2 Double Operand Logic Instructions

 and a,expr and f,expr
 and a,[expr] and [expr],a
 and a,[x+expr] and [x+expr],a
 and [expr],expr and [x+expr],expr
 and reg[expr],expr and reg[x+expr],expr

 or a,expr or f,expr
 or a,[expr] or [expr],a
 or a,[x+expr] or [x+expr],a
 or [expr],expr or [x+expr],expr
 or reg[expr],expr or reg[x+expr],expr

 xor a,expr xor f,expr
 xor a,[expr] xor [expr],a
 xor a,[x+expr] xor [x+expr],a
 xor [expr],expr xor [x+expr],expr
 xor reg[expr],expr xor reg[x+expr],expr

 BG.3.3 Miscellaneous Double Operand Instructions

 swap a,x swap a,sp
 swap a,[expr] swap a,[x+expr]

 tst [expr] tst [x+expr]
 tst reg[expr] tst reg[x+expr]

 BG.3.4 Single Operand Shift/Rotate Instructions

 asl a
 asl [expr] asl [x+expr]

 asr a
 asr [expr] asr [x+expr]

 rlc a
 rlc [expr] rlc [x+expr]

 rrc a
 rrc [expr] rrc [x+expr]

 ASM8C ASSEMBLER PAGE BG-4
 M8C INSTRUCTION SET

 BG.3.5 Miscellaneous Single Operand Instructions

 cpl a

 dec a dec x
 dec [expr] dec [x+expr]

 inc a inc x
 inc [expr] inc [x+expr]

 pop a pop x
 push a push x

 tst [expr] tst [x+expr]
 tst reg[expr] tst reg[x+expr]

 BG.3.6 Move Instructions

 mov a,x
 mov a,expr
 mov a,[expr] mov [expr],a
 mov a[x+expr] mov [x+expr],a

 mov x,a mov x,sp
 mov x,expr
 mov x,[expr] mov [expr],x
 mov x,[x+expr]

 mov [expr],expr mov [x+expr],expr

 mov [expr],[expr]

 mov a,reg[expr] mov a,reg[x+expr]
 mov reg[expr],a mov reg[x+expr],a

 mov reg[expr],expr mov reg[x+expr],expr

 mvi a,[expr] == mvi a,[[expr]++]
 mvi [expr],a == mvi [[expr]++],a

 ASM8C ASSEMBLER PAGE BG-5
 M8C INSTRUCTION SET

 BG.3.7 Inherent Instructions

 halt nop
 romx ssc
 ret reti

 BG.3.8 Branching Instructions

 lcall expr ljmp expr
 jz expr jnz expr
 jc expr jnc expr
 jacc expr

 BG.3.9 Relative Table Read Instruction

 index expr

 APPENDIX BH

 ASPIC ASSEMBLER

 BH.1 PIC ASSEMBLER NOTES

 The PIC series of processors uses a non unified addressing
 scheme: the instruction addressing is 1 per instruction word,
 each instruction uses a word of memory varying from 12 to 16
 bits in length. The processor data is addressed as 1 per byte
 of data. To properly address the program/data spaces you, the
 programmer, must seperate your program and data into seperate
 code and data areas. The data area is addressed as 1 per byte
 and the code area is addressed as 1 per instruction.

 The assembler/linker processes the instruction code so that
 the linker will output 2 bytes for each instruction word. The
 instruction word address will be the file encoded address
 divided by 2.

 BH.2 PROCESSOR SPECIFIC DIRECTIVES

 The ASPIC assembler has several processor specific assem-
 bler directives. These directives specify a processor name,
 select a PIC processor family type, define the maximum ram ad-
 dress, specify ram addresses that should not be accessed, and
 define the register file address page.

 ASPIC ASSEMBLER PAGE BH-2
 PROCESSOR SPECIFIC DIRECTIVES

 BH.2.1 .pic Directive

 Format:

 .pic /string/ or

 .pic ^/string/

 where: string represents a text string. The string is the pic
 processor type.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .pic
 directive will give the <q> error.

 The assembler uses the delimited string to define a proces-
 sor specific symbol. e.g: "p12c508" produces the symbol
 __12c508 having a value of 1. This symbol can then be used in
 an .ifdef/.else/.endif construct.

 The assembler should be configured by including directives
 similiar to the folowing at the beginning of your assembly file:

 .pic "p12c508" ; Set PIC Name
 .pic12bit ; Select PIC Type

 The ASPIC assembler will then be configured for the PIC
 processor type "p12c508". The .pic directive must precede the
 PIC type directive. The PIC type directive configures the as-
 sembler based on the processor name and type selection.

 An alternate method to configure the ASPIC assembler is as
 follows:

 .pic "p12c508" ; Set PIC Name
 .include "piccpu.def" ; Selects PIC Type

 To define the special function register names, bit values,
 and memory constraints for a specific processor include the
 appropriate definition file:

 .include "p12c508.def" ; Definitions

 ASPIC ASSEMBLER PAGE BH-3
 PROCESSOR SPECIFIC DIRECTIVES

 BH.2.2 .picnopic Directive

 Format:

 .picnopic

 This directive deselects all processor specific mnemonics.

 BH.2.3 .pic12bit Directive

 Format:

 .pic12bit

 This directive selects the 12-bit instruction word mnemon-
 ics and opcode values to be used during the assembly process.

 BH.2.4 .pic14bit Directive

 Format:

 .pic14bit

 This directive selects the 14-bit instruction word mnemon-
 ics and opcode values to be used during the assembly process.

 BH.2.5 .pic16bit Directive

 Format:

 .pic16bit

 This directive selects the 16-bit instruction word mnemon-
 ics and opcode values to be used during the assembly process.

 ASPIC ASSEMBLER PAGE BH-4
 PROCESSOR SPECIFIC DIRECTIVES

 BH.2.6 .pic20bit Directive

 Format:

 .pic20bit

 This directive selects 20-bit addressing and the 16-bit in-
 struction word mnemonics and opcode values to be used during the
 assembly process.

 BH.2.7 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds
 to the selected processor type. The default value is 0 which
 corresponds to the default processor type. The following table
 lists the processor types and associated values for the ASPIC
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .picnopic 0
 .pic12bit 1
 .pic14bit 2
 .pic16bit 3
 .pic20bit 4

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 ASPIC ASSEMBLER PAGE BH-5
 PROCESSOR SPECIFIC DIRECTIVES

 BH.2.8 .picfix Directive

 Format:

 .picfix chip, mnemonic, value

 This directive can be used to "fix" or change the opcode
 value of any pic instruction of the currently selected pic type.
 e.g.:

 .picfix "p12c671", "clrw", 0x0103

 will change the "clrw" instruction's opcode to 0x0103 if the
 current pic type is "p12c671".

 BH.2.9 .maxram Directive

 Format:

 .maxram value

 Where value is the highest allowed ram address

 BH.2.10 .badram Directive

 Format:

 .badram address
 .badram lo:hi

 Where address is a single location and lo:hi is a range of
 addresses that should not be used. Multiple locations and/or
 ranges may be specified by seperating the arguments with a
 comma:

 .badram 0x23, 0x28:0x2F, ...

 The ASPIC assembler will report an error for any absolute
 register file address in the badram range.

 ASPIC ASSEMBLER PAGE BH-6
 PROCESSOR SPECIFIC DIRECTIVES

 BH.2.11 .setdmm Directive

 Format:

 .setdmm value

 The .setdmm (set Data Memory Map) directive is used to in-
 form the assembler and linker about which ram bank has been
 selected for access. The PIC17Cxxx microprocessor family allows
 upto 2 (or more) banks of 256 byte ram blocks. The PIC18Cxxx
 microprocessor family allows upto 16 banks of 256 byte ram
 blocks. The data memory map value must be set on a 256 byte
 boundary. e.g.:

 .setdmm 0x0F00

 The assembler verifies that any absolute address to the
 register file is within the 256 byte page. External direct
 references are assumed by the assembler to be in the correct
 area and have valid offsets. The linker will check all page
 relocations to verify that they are within the correct address-
 ing range.

 BH.3 12-BIT OPCODE PIC

 The 12-bit opcode family of PIC processors support the following
 assembler arguments:
 (*)f
 (*)f,(#)d
 (*)f,(#)b
 (#)k
 label

 where: f register file address
 d destination select:
 (0, -> w), (1 -> f)
 the letters w or f may be used
 to select the destination
 b bit address in an 8-bit file register
 k literal constant
 label label name

 Items enclosed in () are optional.

 The terms f, d, b, k, and label may all be expressions.

 ASPIC ASSEMBLER PAGE BH-7
 12-BIT OPCODE PIC

 Note that not all addressing modes are valid with every in-
 struction, refer to the processor specific technical data for
 valid modes.

 PIC12C5XX CPU Type
 PIC12C508, PIC12C509, PIC12CE518
 PIC12C508A, PIC12C509A, PIC12CE519
 PIC12CR509A

 BH.4 14-BIT OPCODE PIC

 The 14-bit opcode family of PIC processors support the following
 assembler arguments:
 (*)f
 (*)f,(#)d
 (*)f,(#)b
 (#)k
 label

 where: f register file address
 d destination select:
 (0, -> w), (1 -> f)
 the letters w or f may be used
 to select the destination
 b bit address in an 8-bit file register
 k literal constant
 label label name

 Items enclosed in () are optional.

 The terms f, d, b, k, and label may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the processor specific technical data for
 valid modes.

 PIC12C67X CPU Type
 PIC12C671, PIC12C672, PIC12LC671,
 PIC12LC672
 PIC12CE673, PIC12CE674, PIC12LCE673,
 PIC12LCE674

 PIC14000 CPU Type

 ASPIC ASSEMBLER PAGE BH-8
 14-BIT OPCODE PIC

 PIC14000

 PIC16C15X CPU Type
 PIC16C154, PIC16C156, PIC16C158
 PIC16CR154, PIC16CR156, PIC16CR158

 PIC16C5X CPU Type
 PIC16C52
 PIC16C54, PICC16C54A, PIC16C54B,
 PIC16C54C
 PIC16CR54, PIC16CR54A, PIC16C54B,
 PIC16CR54C
 PIC16C55, PIC16C55A, PIC16C56,
 PIC16C56A
 PIC16CR56A
 PIC16C57, PIC16CR57A, PIC16C57B,
 PIC16C57C
 PIC16C58A, PIC16CR58A, PIC16C58B,
 PIC16CR58B

 PIC16C55X CPU Type
 PIC16C554, PIC16C556, PIC16C558

 PIC16C62X, PIC16C64X and, PIC16C66X CPU Types
 PIC16C620, PIC16C621, PIC16C622
 PIC16C642, PIC16C662

 PIC16C7XX CPU Type
 PIC16C71, PIC16C72, PIC16CR72
 PIC16C73A, PIC16C74A, PIC16C76, PIC16C77
 PIC16C710, PIC16C711, PIC16C715

 PIC16C8X CPU Type
 PIC16F83, PIC16CR83, PIC16F84,
 PIC16CR84
 PIC16HV540
 PIC16F627, PIC16F628
 PIC16F870, PIC16F871, PIC16F872,
 PIC16F873
 PIC16F874, PIC16F876, PIC16F877

 PIC16C9XX CPU Type
 PIC16C923, PIC16C924

 ASPIC ASSEMBLER PAGE BH-9
 16-BIT OPCODE PIC

 BH.5 16-BIT OPCODE PIC

 The 16-bit opcode family of PIC processors support the following
 assembler arguments:
 (*)f
 (*)f,(#)d
 (*)f,(#)s
 (*)f,(#)b
 (*)f,(*)p / (*)p,(*)f
 (#)t,(*)f
 (#)t,(#)i,(*)f
 {#}k
 label

 where: f register file address
 d destination select:
 (0, -> w), (1 -> f)
 the letters w or f may be used
 to select the destination
 s destination select:
 (0, -> f and w), (1, -> f)
 the letters w or f may be used
 to select the destination
 t table byte select:
 (0, -> lower byte)
 (1, -> upper byte)
 i table pointer control
 (0, -> no change)
 (1, -> post increment)
 b bit address of an 8-bit file register
 p peripheral register file address
 k literal constant
 label label name

 Items enclosed in () are optional.

 The terms f, d, s, t, i, b, p, k, and label may all be
 expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the processor specific technical data for
 valid modes.

 PIC17CXXX CPU Type
 PIC17C42, PIC17C42A, PIC17C43, PIC17C44
 PIC17C752, PIC17C756, PIC17C756A

 ASPIC ASSEMBLER PAGE BH-10
 16-BIT OPCODE PIC

 PIC17C762, PIC17C766, PIC17CR42,
 PIC17CR43

 BH.6 20-BIT ADDRESSING PIC

 The 20-bit addressing family of PIC processors support the
 following assembler arguments:
 (*)f(,a)
 (*)f,(#)d(,(#)a)
 (*)f,(#)s
 (*)f,(#)b(,(#)a)
 (*)fs,(*)fd
 (#)t,(*)f
 (#)t,(#)i,(*)f
 {#}k
 label(,(#)s)
 ((#)s)
 mm

 where: f register file address
 fs register file source
 fd register file destination
 a ram access bit
 (0, -> ACCESS RAM)
 (1, -> RAM BANK)
 d destination select:
 (0, -> w), (1 -> f)
 the letters w or f may be used
 to select the destination
 s fast call/return mode:
 (0, -> SLOW), (1, -> FAST)
 b bit address of an 8-bit file register
 mm TBLRD and TBLWT suffixs
 ('*', -> no change)
 ('*+', -> post-increment)
 ('*-', -> post-decrement)
 ('+*', -> pre-increment)
 k literal constant
 label label name

 Items enclosed in () are optional.

 The terms f, fs, fd, a, b, d, s, k, and label may all be
 expressions.

 Note that not all addressing modes are valid with every in-

 ASPIC ASSEMBLER PAGE BH-11
 20-BIT ADDRESSING PIC

 struction, refer to the processor specific technical data for
 valid modes.

 PIC18CXXX CPU Type
 PIC18C242, PIC18C252
 PIC18C442, PIC18C452
 PIC18C658, PIC18C858

 BH.7 PIC OPCODES

 The following table contains all the mnemonics recognized
 by the ASPIC assembler. The processors supporting each mnemonic
 are indicated by the code 'PIC:12:14:16:20' after each instruc-
 tion type. The designation [] refers to a required addressing
 mode argument.

 addwf [] PIC:12:14:16:20
 addwfc [] PIC:--:--:16:20
 andwf [] PIC:12:14:16:20
 comf [] PIC:12:14:16:20
 decf [] PIC:12:14:16:20
 decfsz [] PIC:12:14:16:20
 dcfsnz [] PIC:--:--:16:20
 incf [] PIC:12:14:16:20
 incfsz [] PIC:12:14:16:20
 infsnz [] PIC:--:--:16:20
 iorwf [] PIC:12:14:16:20
 movf [] PIC:12:14:--:20
 negw [] PIC:--:--:16:--
 rlf [] PIC:12:14:--:--
 rlcf [] PIC:--:--:16:20
 rlncf [] PIC:--:--:16:20
 rrf [] PIC:12:14:--:--
 rrcf [] PIC:--:--:16:20
 rrncf [] PIC:--:--:16:20
 subfwb [] PIC:--:--:--:20
 subwf [] PIC:12:14:16:20
 subwfb [] PIC:--:--:16:20
 swapf [] PIC:12:14:16:20
 xorwf [] PIC:12:14:16:20

 movfp [] PIC:--:--:16:--
 movpf [] PIC:--:--:16:--

 movlb [] PIC:--:--:16:20

 ASPIC ASSEMBLER PAGE BH-12
 PIC OPCODES

 movlr [] PIC:--:--:16:--

 movff [] PIC:--:--:--:20

 lfsr [] PIC:--:--:--:20

 clrf [] PIC:12:14:16:20
 cpfseq [] PIC:--:--:16:20
 cpfsgt [] PIC:--:--:16:20
 cpfslt [] PIC:--:--:16:20
 movwf [] PIC:12:14:16:20
 mulwf [] PIC:--:--:16:20
 negf [] PIC:--:--:--:20
 setf [] PIC:--:--:16:20
 tstfsz [] PIC:--:--:16:20

 bcf [] PIC:12:14:16:20
 bsf [] PIC:12:14:16:20
 btfsc [] PIC:12:14:16:20
 btfss [] PIC:12:14:16:20
 btg [] PIC:--:--:16:20

 addlw [] PIC:--:14:16:20
 andlw [] PIC:12:14:16:20
 iorlw [] PIC:12:14:16:20
 movlw [] PIC:12:14:16:20
 mullw [] PIC:--:--:16:20
 retlw [] PIC:12:14:16:20
 sublw [] PIC:--:14:16:20
 xorlw [] PIC:12:14:16:20

 call [] PIC:12:14:16:20
 goto [] PIC:12:14:16:20
 lcall [] PIC:--:--:16:--

 bc [] PIC:--:--:--:20
 bn [] PIC:--:--:--:20
 bnc [] PIC:--:--:--:20
 bnn [] PIC:--:--:--:20
 bnov [] PIC:--:--:--:20
 bnc [] PIC:--:--:--:20
 bov [] PIC:--:--:--:20
 bz [] PIC:--:--:--:20

 bra [] PIC:--:--:--:20
 rcall [] PIC:--:--:--:20

 tablrd [] PIC:--:--:16:--
 tablwt [] PIC:--:--:16:--

 ASPIC ASSEMBLER PAGE BH-13
 PIC OPCODES

 tlrd [] PIC:--:--:16:--
 tlwt [] PIC:--:--:16:--
 tblrd [] PIC:--:--:--:20
 tblwt [] PIC:--:--:--:20

 clrw [] PIC:12:14:--:--
 clrwdt PIC:12:14:16:20
 daw PIC:--:--:16:20
 nop PIC:12:14:16:20
 option PIC:12:14:--:--
 pop PIC:--:--:--:20
 push PIC:--:--:--:20
 retfie [] PIC:--:14:16:20
 return [] PIC:--:14:16:20
 sleep PIC:12:14:16:20

 tris [] PIC:12:14:--:--

 APPENDIX BI

 ASRAB ASSEMBLER

 BI.1 ACKNOWLEDGMENT

 Thanks to Ulrich Raich and Razaq Ijoduola for their contri-
 bution of the ASRAB cross assembler.

 Ulrich Raich and Razaq Ijoduola
 PS Division
 CERN
 CH-1211 Geneva-23

 Ulrich Raich
 Ulrich dot Raich at cern dot ch

 BI.2 PROCESSOR SPECIFIC DIRECTIVES

 The ASRAB assembler is a port of the ASZ80 assembler. This
 assembler can process Z80, HD64180 (Z180), and Rabbit 2000/3000
 (default) code. The following processor specific assembler
 directives specify which processor to target when processing the
 input assembler files.

 ASRAB ASSEMBLER PAGE BI-2
 PROCESSOR SPECIFIC DIRECTIVES

 BI.2.1 .r2k Directive

 Format:

 .r2k

 The .r2k directive enables processing of the Rabbit 2000/3000
 specific mnemonics. Mnemonics not associated with the Rabbit
 2000/3000 processor will be flagged with an <o> error. Address-
 ing modes not supported by the Rabbit 2000/3000 will be flagged
 with an <a> error. A synonym of .r2k is .r3k. The default as-
 sembler mode is .r2k.

 The .r2k directive also selects the Rabbit 2000/3000
 specific cycles count to be output.

 BI.2.2 .hd64 Directive

 Format:

 .hd64

 The .hd64 directive enables processing of the HD64180 (Z180)
 specific mnemonics not included in the Z80 instruction set.
 Rabbit 2000/3000 mnemonics encountered will be flagged with an
 <o> error. Addressing modes not supported by the HD64180 (Z180)
 will be flagged with an <a> error. A synonym of .hd64 is .z180.

 The .hd64 directive also selects the HD64180/Z180 specific
 cycles count to be output.

 BI.2.3 .z80 Directive

 Format:

 .z80

 The .z80 directive enables processing of the Z80 specific
 mnemonics. HD64180 and Rabbit 2000/3000 specific mnemonics will
 be flagged with an <o> error. Addressing modes not supported by
 the z80 will be flagged with an <a> error.

 The .z80 directive also selects the Z80 specific cycles
 count to be output.

 ASRAB ASSEMBLER PAGE BI-3
 PROCESSOR SPECIFIC DIRECTIVES

 BI.2.4 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds
 to the selected processor type. The default value is 0 which
 corresponds to the default processor type. The following table
 lists the processor types and associated values for the ASRAB
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .r2k / .r3k 0
 .hd64 / .z180 1
 .z80 2

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 ASRAB ASSEMBLER PAGE BI-4
 PROCESSOR SPECIFIC DIRECTIVES

 BI.3 RABBIT 2000/3000 ADDRESSING AND INSTRUCTIONS

 BI.3.1 Instruction Symbols

 b Bit select
 (000 = bit 0, 001 = bit 1,
 010 = bit 2, 011 = bit 3,
 100 = bit 4, 101 = bit 5,
 110 = bit 6, 111 = bit 7)
 cc Condition code select
 (00 = NZ, 01 = Z, 10 = NC, 11 = C)
 d 8-bit (signed) displacement.
 Expressed in two\'s complement.
 dd word register select-destination
 (00 = BC, 01 = DE, 10 = HL, 11 = SP)
 dd' word register select-alternate
 (00 = BC', 01 = DE', 10 = HL')
 e 8-bit (signed) displacement added to PC.
 f condition code select
 (000 = NZ, 001 = Z, 010 = NC, 011 = C,
 100 = LZ/NV, 101 = LO/V, 110 = P, 111 = M)
 m the most significant bits(MSB) of a 16-bit constant
 mn 16-bit constant
 n 8-bit constant or the least significant bits(LSB)
 of a 16-bit constant
 r, g byte register select
 (000 = B, 001 = C, 010 = D, 011 = E,
 100 = H, 101 = L, 111 = A)
 ss word register select-source
 (00 = BC, 01 = DE, 10 = HL, 11 = SP)
 v Restart address select
 (010 = 0020h, 011 = 0030h, 100 = 0040h,
 101 = 0050h, 111 = 0070h)
 x an 8-bit constant to load into the XPC
 xx word register select
 (00 = BC, 01 = DE, 10 = IX, 11 = SP)
 yy word register select
 (00 = BC, 01 = DE, 10 = IY, 11 = SP)
 zz word register select
 (00 = BC, 01 = DE, 10 = HL, 11 = AF)

 ASRAB ASSEMBLER PAGE BI-5
 RABBIT 2000/3000 ADDRESSING AND INSTRUCTIONS

 C - carry bit set
 M - sign bit set
 NC - carry bit clear
 NZ - zero bit clear
 P - sign bit clear
 PE - parity even
 V - overflow bit set
 PO - parity odd
 NV - overflow bit clear
 Z - zero bit set

 The terms m, mn, n, and x may all be expressions. The terms b
 and v are not allowed to be external references.

 ASRAB ASSEMBLER PAGE BI-6
 RABBIT 2000/3000 ADDRESSING AND INSTRUCTIONS

 BI.3.2 Rabbit Instructions

 The following list of instructions (with explicit address-
 ing modes) are available in the Rabbit 2000/3000 assembler mode.
 Those instructions denoted by an asterisk (*) are additional in-
 structions not available in the HD64180 or Z80 assembler mode.

 ADC A,n DEC IX LD A,EIR
 ADC A,r DEC IY LD A,IIR
 ADC A,(HL) DEC r *LD A,XPC
 ADC A,(IX+d) DEC ss LD A,(BC)
 ADC A,(IY+d) DEC (HL) LD A,(DE)
 ADC HL,ss DEC (IX+d) LD A,(mn)
 ADD A,n DEC (IY+d) *LD dd,BC
 ADD A,r DJNZ e *LD dd,DE
 ADD A,(HL) LD dd,mn
 ADD A,(IX+d) EX AF,AF LD dd,(mn)
 ADD A,(IY+d) EX DE,HL LD EIR,A
 ADD HL,ss EX DE,HL *LD HL,IX
 ADD IX,xx EX (SP),HL *LD HL,IY
 ADD IY,yy EX (SP),IX *LD HL,(HL+d)
 *ADD SP,d EX (SP),IY *LD HL,(IX+d)
 *ALTD EXX *LD HL,(IY+d)
 *AND HL,DE LD HL,(mn)
 *AND IX,DE INC IX *LD HL,(SP+n)
 *AND IY,DE INC IY LD IIR,A
 AND n INC r *LD IX,HL
 AND r INC ss LD IX,mn
 AND (HL) INC (HL) LD IX,(mn)
 AND (IX+d) INC (IX+d) *LD IX,(SP+n)
 AND (IY+d) INC (IY+d) *LD IY,HL
 *IOE LD IY,mn
 BIT b,r *IOI LD IY,(mn)
 BIT b,(HL) *IPRES *LD IY,(SP+n)
 BIT b,(IX+d) *IPSET 0 LD r,g
 BIT b,(IY+d) *IPSET 1 LD r,n
 *BOOL HL *IPSET 2 LD r,(HL)
 *BOOL IX *IPSET 3 LD r,(IX+d)
 *BOOL IY LD r,(IY+d)
 JP f,mn LD SP,HL
 CALL mn JP mn LD SP,IX
 CCF JP (HL) LD SP,IY
 CP n JP (IX) *LD XPC,A
 CP r JP (IY) LD (BC),A
 CP (HL) JR cc,e LD (DE),A
 CP (IX+d) JR e LD (HL),n
 CP (IY+d) LD (HL),r
 CPL *LCALL x,mn

 ASRAB ASSEMBLER PAGE BI-7
 RABBIT 2000/3000 ADDRESSING AND INSTRUCTIONS

 *LD (HL+d),HL *POP IP SBC A,n
 *LD (IX+d),HL POP IX SBC A,r
 LD (IX+d),n POP IY SBC A,(HL)
 LD (IX+d),r POP zz SBC HL,ss
 *LD (IY+d),HL *PUSH IP SBC (IX+d)
 LD (IY+d),n PUSH IX SBC (IY+d)
 LD (IY+d),r PUSH IY SCF
 LD (mn),A PUSH zz SET b,r
 LD (mn),HL SET b,(HL)
 LD (mn),IX RA SET b,(IX+d)
 LD (mn),IY RES b,r SET b,(IY+d)
 LD (mn),ss RES b,(HL) SLA r
 *LD (SP+n),HL RES b,(IX+d) SLA (HL)
 *LD (SP+n),IX RES b,(IY+d) SLA (IX+d)
 *LD (SP+n),IY RET SLA (IY+d)
 LDD RET f SRA r
 LDDR *RETI SRA (HL)
 LDI *RL DE SRA (IX+d)
 LDIR RL r SRA (IY+d)
 *LDP HL,(HL) RL (HL) SRL r
 *LDP HL,(IX) RL (IX+d) SRL (HL)
 *LDP HL,(IY) RL (IY+d) SRL (IX+d)
 *LDP HL,(mn) RLA SRL (IY+d)
 *LDP IX,(mn) RLC r SUB n
 *LDP IY,(mn) RLC (HL) SUB r
 *LDP (HL),HL RLC (IX+d) SUB (HL)
 *LDP (IX),HL RLC (IY+d) SUB (IX+d)
 *LDP (IY),HL RLCA SUB (IY+d)
 *LDP (mn),HL *RR DE
 *LDP (mn),IX *RR HL XOR n
 *LDP (mn),IY *RR IX XOR r
 LJP x,mn *RR IY XOR (HL)
 LRET RR r XOR (IX+d)
 RR (HL) XOR (IY+d)
 *MUL RR (IX+d)
 RR (IY+d)
 NEG RRC r
 NOP RRC (HL)
 RRC (IX+d)
 *OR HL,DE RRC (IY+d)
 *OR IX,DE RRCA
 *OR IY,DE RST v
 OR n
 OR r
 OR (HL)
 OR (IX+d)
 OR (IY+d)

 ASRAB ASSEMBLER PAGE BI-8
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BI.4 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 The following list specifies the format for each
 Z80/HD64180 addressing mode supported by ASZ80:

 #data immediate data
 byte or word data

 n byte value

 rg a byte register
 a,b,c,d,e,h,l

 rp a register pair
 bc,de,hl

 (hl) implied addressing or
 register indirect addressing

 (label) direct addressing

 (ix+offset) indexed addressing with
 offset(ix) an offset

 label call/jmp/jr label

 The terms data, n, label, and offset, may all be expressions.
 The terms dir and offset are not allowed to be external refer-
 ences.

 The following tables list all Z80/HD64180 mnemonics recog-
 nized by the ASRAB assembler. The designation [] refers to a
 required addressing mode argument.

 Note that not all addressing modes are valid with every in-
 struction, refer to the Z80/HD64180 technical data for valid
 modes.

 ASRAB ASSEMBLER PAGE BI-9
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BI.4.1 Inherent Instructions

 ccf cpd
 cpdr cpi
 cpir cpl
 daa di
 ei exx
 halt neg
 nop reti
 retn rla
 rlca rld
 rra rrca
 rrd scf

 BI.4.2 Implicit Operand Instructions

 adc a,[] adc []
 add a,[] add []
 and a,[] and []
 cp a,[] cp []
 dec a,[] dec []
 inc a,[] inc []
 or a,[] or []
 rl a,[] rl []
 rlc a,[] rlc []
 rr a,[] rr []
 rrc a,[] rrc []
 sbc a,[] sbc []
 sla a,[] sla []
 sra a,[] sra []
 srl a,[] srl []
 sub a,[] sub []
 xor a,[] xor []

 ASRAB ASSEMBLER PAGE BI-10
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BI.4.3 Load Instruction

 ld rg,[] ld [],rg
 ld (bc),a ld a,(bc)
 ld (de),a ld a,(de)
 ld (label),a ld a,(label)
 ld (label),rp ld rp,(label)
 ld i,a ld r,a
 ld a,i ld a,r
 ld sp,hl ld sp,ix
 ld sp,iy ld rp,#data

 ldd lddr
 ldi ldir

 BI.4.4 Call/Return Instructions

 call C,label ret C
 call M,label ret M
 call NC,label ret NC
 call NZ,label ret NZ
 call P,label ret P
 call PE,label ret PE
 call PO,label ret PO
 call Z,label ret Z
 call label ret

 BI.4.5 Jump and Jump to Subroutine Instructions

 jp C,label jp M,label
 jp NC,label jp NZ,label
 jp P,label jp PE,label
 jp PO,label jp Z,label

 jp (hl) jp (ix)
 jp (iy) jp label

 djnz label

 jr C,label jr NC,label
 jr NZ,label jr Z,label
 jr label

 ASRAB ASSEMBLER PAGE BI-11
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BI.4.6 Bit Manipulation Instructions

 bit n,[]
 res n,[]
 set n,[]

 BI.4.7 Interrupt Mode and Reset Instructions

 im n
 im n
 im n
 rst n

 BI.4.8 Input and Output Instructions

 in a,(n) in rg,(c)
 ind indr
 ini inir

 out (n),a out (c),rg
 outd otdr
 outi otir

 BI.4.9 Register Pair Instructions

 add hl,rp add ix,rp
 add iy,rp

 adc hl,rp sbc hl,rp

 ex (sp),hl ex (sp),ix
 ex (sp),iy
 ex de,hl
 ex af,af'

 push rp pop rp

 ASRAB ASSEMBLER PAGE BI-12
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BI.4.10 HD64180 Specific Instructions

 in0 rg,(n)
 out0 (n),rg

 otdm otdmr
 otim otimr

 mlt bc mlt de
 mlt hl mlt sp

 slp

 tst a
 tstio #data

 APPENDIX BJ

 ASSCMP ASSEMBLER

 BJ.1 SC/MP REGISTER SET

 The following is a list of the SC/MP registers used by ASSCMP:

 p0,pc - 16-bit program counter
 p1,p2,p3 - 16-bit pointer registers

 BJ.2 SC/MP ADDRESSING MODES

 The general addressing modes are normally described in the
 form @DISP(X) which correspond to these specific modes:

 DISP a PC relative address
 DISP(X) a DISPlacement from a pointer register
 @DISP(X) An auto-increment DISPlacement from a
 pointer register

 The ASSCMP assembler also allows the (and) designators to
 be replaced by the [and] designators.

 The ASSCMP assembler also allows several shorthand nota-
 tions for the addressing modes as shown here:

 (X) ==>> 0(X)
 @(X) ==>> @0(X)
 @DISP ==>> @DISP(PC)

 The xpal, xpah, and xppc instructions require only a
 pointer register - p0, p1, p2, p3, or pc.

 ASSCMP ASSEMBLER PAGE BJ-2
 SC/MP ADDRESSING MODES

 The standard memory reference instructions: ld, and, or,
 xor, dad, add, and cad also allow an alternate immediate mode
 instruction using the following format:

 ld #DATA

 The # is required otherwise DATA will be treated as a PC
 relative address.

 The immediate mode instructions: ldi, ani, ori, xri, dai,
 adi, and cai allow either of these forms:

 ldi #DATA
 ldi DATA

 BJ.3 SC/MP INSTRUCTION SET

 The following tables list all SC/MP mnemonics recognized by
 the ASSCMP assembler.

 BJ.3.1 Memory Reference Instructions

 ld @DISP(X) / #data Load
 st @DISP(X) ------- Store
 and @DISP(X) / #data AND
 or @DISP(X) / #data OR
 xor @DISP(X) / #data Exclusive OR
 dad @DISP(X) / #data Decimal Add
 add @DISP(X) / #data Add
 cad @DISP(X) / #data Complement and Add

 BJ.3.2 Immediate Instructions

 ldi #data / data Load Immediate
 ld #data
 ani #data / data AND Immediate
 and #data
 ori #data / data Or Immediate
 or #data
 xri #data / data Exclusive Or Immediate
 xor #data
 dai #data / data Decimal Add Immediate
 dad #data
 adi #data / data Add Immediate

 ASSCMP ASSEMBLER PAGE BJ-3
 SC/MP INSTRUCTION SET

 add #data
 cai #data / data Complement and Add Immediate
 cad #data

 BJ.3.3 Extension Register Instructions

 lde Load AC from Extension
 xae Exchange AC and Extension
 ane AND Extension
 ore OR Extension
 xre Exclusive Or Extension
 dae Decimal Add Extension
 ade Add Extension
 cae Complement and Add Extension

 BJ.3.4 Memory Increment/Decrement Instructions

 dld DISP(X) Increment and Load
 ild DISP(X) Decrement aand Load

 BJ.3.5 Transfer Instructions

 jmp DISP(X) Jump
 jp DISP(X) Jump if Positive
 jz DISP(X) Jump if Zero
 jnz DISP(X) Jump if Not Zero

 BJ.3.6 Pointer Register Move Instructions

 xpal X Exchange Pointer Low
 xpah X Exchange Pointer High
 xppc X Exchange Pointer with PC

 ASSCMP ASSEMBLER PAGE BJ-4
 SC/MP INSTRUCTION SET

 BJ.3.7 Shift, Rotate, Serial I/O Instructions

 sio Serial Input/Output
 sr Shift Right
 srl Shift Right with Link
 rr Rotate Right
 rrl Rotate Right with Link

 BJ.3.8 Single-Byte Miscellaneous Instructions

 halt Halt
 ccl Clear Carry Link
 scl Set Carry Link
 dint Disable Interrupt
 ien Enable Interrupt
 csa Copy Status to AC
 cas Copy AC to Status
 nop No Operation

 BJ.3.9 Double-Byte Miscellaneous Instruction

 dly #data / data Delay

 APPENDIX BK

 ASST6 ASSEMBLER

 BK.1 ST6 REGISTER SET

 The following is a list of the ST6 registers used by ASST6:

 a - 8-bit accumulator
 x,y - 8-bit index registers
 v,w - 8-bit scratch registers

 BK.2 ST6 INSTRUCTION SET

 The following list specifies the format for each addressing
 mode supported by ASST6:

 r register (a,x,y,w,v) addressing

 #data immediate data byte

 dir or *dir 8-bit zero page addressing
 0 <= dir <= 255

 ext 12-bit extended addressing

 (x) or (y) register indirect addressing

 label pc-relative branch addressing

 The terms data, dir, offset, ext, and label may all be expres-
 sions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the ST6 technical data for valid modes.

 ASST6 ASSEMBLER PAGE BK-2
 ST6 INSTRUCTION SET

 The following tables list all ST6 mnemonics recognized by the
 ASST6 assembler.

 BK.2.1 Inherent Instructions

 nop ret
 reti stop
 wait

 BK.2.2 Conditional Branch Instructions

 jrc label jrnc label
 jrz label jrnz label
 jrr #,*dir,label
 jrs #,*dir,label

 BK.2.3 Bit Manipulation Instructions

 set #,*dir res #,*dir

 BK.2.4 Single Operand Instructions

 clr a clr *dir
 com a

 dec r dec *dir
 dec (x) dec (y)
 inc r inc *dir
 inc (x) inc (y)

 rlc a sla a

 ASST6 ASSEMBLER PAGE BK-3
 ST6 INSTRUCTION SET

 BK.2.5 Double Operand Instructions

 add a,(x) add a,(y)
 add a,*dir addi a,#

 and a,(x) and a,(y)
 and a,*dir andi a,#

 cp a,(x) cp a,(y)
 cp a,*dir cpi a,#

 sub a,(x) sub a,(y)
 sub a,*dir subi a,#

 BK.2.6 Call to Subroutine and Jump Instructions

 call ext jmp ext

 BK.2.7 Load and Store Instructions

 ld a,x ld a,y
 ld a,v ld a,w

 ld x,a ld y,a
 ld v,a ld w,a

 ld a,*dir ld *dir,a

 ld a,(x) ld a,(y)
 ld (x),a ld (y),a

 ldi a,# ld *dir,#

 APPENDIX BL

 ASST7 ASSEMBLER

 BL.1 ST7 REGISTER SET

 The following is a list of the ST7 registers used by ASST7:

 a - 8-bit accumulator
 x,y - 8-bit index registers
 cc - 8-bit condition code register
 s - 16-bit stack pointer

 BL.2 ST7 INSTRUCTION SET

 The following list specifies the format for each addressing
 mode supported by ASST7:

 reg register addressing
 (a,x,y,s,cc)

 #data immediate data byte

 *saddr 8-bit zero page addressing
 0x00 <= dir <= 0xFF

 laddr 16-bit addressing

 (x) register indirect addressing

 ASST7 ASSEMBLER PAGE BL-2
 ST7 INSTRUCTION SET

 (*sofst,r) short indexed (r = x,y)
 (sofst,r).b

 (lofst,r).w long indexed (r = x,y)

 (ofst,r) if ofst is relocatable or
 an external value then
 the (lofst,r).w mode is
 selected by default
 else

 (ofst,r) if ofst is a locally
 defined constant then
 the (sofst,r).b mode
 is selected when
 0x00 <= ofst <= 0xFF else
 the (lofst,r).w mode
 is selected

 Instructions supporting
 only a single form will
 use the appropriate form
 but will report an error.

 [*saddr] short indirect
 [saddr].b

 [laddr].w long indexed

 [addr] if addr is relocatable or
 an external value then
 the [laddr].w mode is
 selected by default
 else

 [addr] if addr is a locally
 defined constant then
 the [saddr].b mode
 is selected when
 0x00 <= addr <= 0xFF else
 the [laddr].w mode
 is selected

 Instructions supporting
 only a single form will
 use the appropriate form
 but will report an error.

 ASST7 ASSEMBLER PAGE BL-3
 ST7 INSTRUCTION SET

 ([*saddr],r) short indirect indexed
 ([saddr].b,r) (r = x,y)
 ([saddr],r).b

 ([laddr].w,r) long indirect indexed
 ([laddr],r).w (r = x,y)

 ([addr],r) if addr is relocatable or
 an external value then
 the ([laddr],r).w mode is
 selected by default
 else

 ([addr],r) if addr is a locally
 defined constant then
 the ([saddr],r).b mode
 is selected when
 0x00 <= addr <= 0xFF else
 the ([laddr],r).w mode
 is selected

 Instructions supporting
 only a single form will
 use the appropriate form
 but will report an error.

 label pc-relative branch addressing

 The terms data, saddr, laddr, addr, sofst, lofst, ofst, and
 label may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the ST7 technical data for valid modes.
 The following tables list all ST7 mnemonics recognized by the
 ASST7 assembler. The designation [] refers to a required ad-
 dressing mode argument.

 ASST7 ASSEMBLER PAGE BL-4
 ST7 INSTRUCTION SET

 BL.2.1 Inherent Instructions

 nop trap
 wfi halt
 ret iret
 sim rim
 scf rcf
 rsp

 BL.2.2 Conditional Branch Instructions

 jra label
 jrt label jrf label
 jrih label jril label
 jrh label jrnh label
 jrm label jrnm label
 jrmi label jrpl label
 jreq label jrne label
 jrc label jrnc label
 jrult label jruge label
 jrugt label jrule label

 jra [saddr]
 jrt [saddr] jrf [saddr]
 jrih [saddr] jril [saddr]
 jrh [saddr] jrnh [saddr]
 jrm [saddr] jrnm [saddr]
 jrmi [saddr] jrpl [saddr]
 jreq [saddr] jrne [saddr]
 jrc [saddr] jrnc [saddr]
 jrult [saddr] jruge [saddr]
 jrugt [saddr] jrule [saddr]

 BL.2.3 Bit Test and Branch Instructions

 btjt saddr,#,label
 btjf saddr,#,label
 btjt [saddr],#,label
 btjf [saddr],#,label

 ASST7 ASSEMBLER PAGE BL-5
 ST7 INSTRUCTION SET

 BL.2.4 Bit Manipulation Instructions

 bset saddr,#
 bres saddr,#
 bset [saddr],#
 bres [saddr],#

 BL.2.5 Single Operand Instructions

 neg [] cpl []
 srl [] rrc []
 sra [] rlc []
 sll [] sla []
 dec [] inc []
 tnz [] swap []
 clr []

 pop reg push reg

 BL.2.6 Double Operand Instructions

 add a,[] adc a,[]
 and a,[] bcp a,[]
 or a,[] sbc a,[]
 sub a,[] xor a,[]

 mul x,a mul y,a

 cp reg,[]

 ld [],[]

 BL.2.7 Call to Subroutine and Jump Instructions

 call [] jp []

 callr label callr [saddr]

 APPENDIX BM

 ASST8 ASSEMBLER

 BM.1 ST8 REGISTER SET

 The following is a list of the ST8 registers used by ASST8:

 a - 8-bit accumulator
 xl,yl - LSB of index registers
 xh,yh - MSB of index registers
 x,y - 16-Bit index registers
 sp - 16-bit stack pointer
 cc - 8-bit condition code register

 BM.2 ST8 INSTRUCTION SET

 The following list specifies the format for each addressing
 mode supported by ASST8:

 reg register addressing
 (a,x,xl,xh,y,yl,yh,sp,cc)

 #data immediate data

 *saddr 8-bit zero page addressing
 0x00 <= saddr <= 0xFF

 laddr 16-bit addressing
 0x0000 <= laddr <= 0xFFFF

 eaddr 24-bit addressing
 0x000000 <= eaddr <= 0xFFFFFF

 (x) register indirect addressing

 ASST8 ASSEMBLER PAGE BM-2
 ST8 INSTRUCTION SET

 (*sofst,r) short indexed (r = x,y,sp)
 (sofst,r).b

 (lofst,r).w long indexed (r = x,y)

 (eofst,r).e extended indexed (r = x,y)
 eofst is a lofst value,
 i.e. a 16-bit value where
 (eofst,r).e points to a
 24-bit address

 (ofst,r) for the ldf instruction the
 (eofst,r).e mode is selected
 else

 (ofst,r) if ofst is relocatable or
 an external value then
 the (lofst,r).w mode is
 selected by default
 else

 (ofst,r) if ofst is a locally
 defined constant then
 the (sofst,r).b mode
 is selected when
 0x00 <= ofst <= 0xFF else
 the (lofst,r).w mode
 is selected

 Instructions supporting
 only a single form will
 use the appropriate form
 but will report an error.

 [*saddr] short indirect
 [saddr].b

 [laddr].w long indexed

 [eaddr].e extended indexed

 [addr] for the callf, jpf, and ldf
 instructions the [eaddr].e
 mode is selected
 else

 [addr] if addr is relocatable or
 an external value then

 ASST8 ASSEMBLER PAGE BM-3
 ST8 INSTRUCTION SET

 the [laddr].w mode is
 selected by default
 else

 [addr] if addr is a locally
 defined constant then
 the [saddr].b mode
 is selected when
 0x00 <= addr <= 0xFF else
 the [laddr].w mode
 is selected

 Instructions supporting
 only a single form will
 use the appropriate form
 but will report an error.

 ASST8 ASSEMBLER PAGE BM-4
 ST8 INSTRUCTION SET

 ([*saddr],r) short indirect indexed
 ([saddr].b,r) (r = x,y)
 ([saddr],r).b

 ([laddr].w,r) long indirect indexed
 ([laddr],r).w (r = x,y)

 ([eaddr].e,r) extended indirect indexed
 ([eaddr],r).e (r = x,y)

 ([addr],r) for the ldf instruction the
 ([eaddr],r).e mode is selected
 else

 ([addr],r) if addr is relocatable or
 an external value then
 the ([laddr],r).w mode is
 selected by default
 else

 ([addr],r) if addr is a locally
 defined constant then
 the ([saddr],r).b mode
 is selected when
 0x00 <= addr <= 0xFF else
 the ([laddr],r).w mode
 is selected

 Instructions supporting
 only a single form will
 use the appropriate form
 but will report an error.

 label pc-relative branch addressing

 The terms data, saddr, laddr, eaddr, addr, sofst, lofst, eofst,
 ofst, and label may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the ST8 technical data for valid modes.
 The following tables list all ST8 mnemonics recognized by the
 ASST8 assembler. The designation [] refers to a required ad-
 dressing mode argument.

 ASST8 ASSEMBLER PAGE BM-5
 ST8 INSTRUCTION SET

 BM.2.1 Inherent Instructions

 nop trap
 wfi wfi
 halt ret
 retf iret
 sim rim
 scf rcf
 rvf ccf

 BM.2.2 Conditional Branch Instructions

 jra label
 jrt label jrf label
 jrugt label jrule label
 jruge label jrult label
 jrnc label jrc label
 jrne label jreq label
 jrnv label jrv label
 jrpl label jrmi label
 jrsgt label jrsle label
 jrsge label jrslt label
 jrnh label jrh label
 jrnm label jrm label
 jril label jrih label

 BM.2.3 Bit Test and Branch Instructions

 btjt laddr,#,label
 btjf laddr,#,label

 BM.2.4 Bit Manipulation Instructions

 bccm laddr,#
 bcpl laddr,#
 bset laddr,#
 bres laddr,#

 ASST8 ASSEMBLER PAGE BM-6
 ST8 INSTRUCTION SET

 BM.2.5 Single Operand Instructions

 neg [] cpl []
 srl [] rrc []
 sra [] rlc []
 sll [] sla []
 dec [] inc []
 tnz [] swap []
 clr []

 negw reg cplw reg
 srlw reg rrcw reg
 sraw reg rlcw reg
 sllw reg slaw reg
 decw reg incw reg
 tnzw reg swapw reg
 clrw reg

 pop reg push reg

 ASST8 ASSEMBLER PAGE BM-7
 ST8 INSTRUCTION SET

 BM.2.6 Double Operand Instructions

 add a,[] adc a,[]
 and a,[] bcp a,[]
 cp a,[] or a,[]
 sbc a,[] sub a,[]
 xor a,[]

 add sp,# sub sp,#

 addw reg,[] subw reg,[]
 cpw reg,[]

 mul x,a mul y,a
 div x,a div y,a
 divw x,y

 exg a,reg exg a,laddr
 exgw x,y

 rrwa x,a rrwa y,a
 rlwa x,a rlwa y,a

 ld [],[]
 ldf a,[] ldf [],a
 ldw reg,[] ldw [],reg

 mov saddr,saddr
 mov laddr,laddr mov laddr,#

 BM.2.7 Call to Subroutine and Jump Instructions

 call [] jp []
 callf eaddr callf [eaddr].e
 jpf eaddr jpf [eaddr].e

 callr label

 APPENDIX BN

 ASZ8 ASSEMBLER

 BN.1 Z8 REGISTER SET

 The following is a list of the Z8 registers used by ASZ8:

 r0 ... r15 - 8-bit accumulators
 rr0 ... rr15 - 16-bit accumulators

 BN.2 Z8 INSTRUCTION SET

 The following tables list all Z8 mnemonics recognized by
 the ASZ8 assembler. The designation [] refers to a required ad-
 dressing mode argument. The following list specifies the format
 for each addressing mode supported by ASZ8:

 #data immediate byte data

 addr location/branch address

 r0 ... r15 8-bit registers

 rr0 ... rr15 16-bit registers

 @rn or register indirect addressing
 (rn)

 @rrn or register indirect addressing
 (rrn)

 @addr or indirect addressing
 (addr)

 ASZ8 ASSEMBLER PAGE BN-2
 Z8 INSTRUCTION SET

 offset(rn) indexed register addressing

 The terms data, addr, and offset may all be expressions.

 The designation CC refers to a condition code argument. The
 following table contains all the valid condition codes supported
 by ASZ8:

 f Always False -
 t Always True -
 c Carry C=1
 nc No Carry C=0
 z Zero Z=1
 nz Non-Zero Z=0
 pl Plus S=0
 mi Minus S=1
 ov Overflow V=1
 nov No Overflow V=0
 eq Equal Z=1
 ne Not Equal Z=0
 ge Greater Than or Equal (S XOR V)=0
 lt Less Than (S XOR V)=1
 gt Greater Than (Z OR (S XOR V))=0
 le Less Than or Equal (Z OR (S XOR V))=1
 uge Unsigned ge C=0
 ult Unsigned lt C=1
 ugt Unsigned gt (C=0 AND Z=0)=1
 ule Unsigned le (C OR Z)=1

 Note that not all addressing modes are valid with every instruc-
 tion, refer to the Z8 technical data for valid modes.

 BN.2.1 Load Instructions

 clr []
 ld [],[] ldc [],[]
 pop [] push []

 ASZ8 ASSEMBLER PAGE BN-3
 Z8 INSTRUCTION SET

 BN.2.2 Arithmetic Instructions

 adc [],[] add [],[]
 cp [],[] da []
 dec [] decw []
 inc [] incw []
 sbc [],[] sub [],[]

 BN.2.3 Logical Instructions

 and [],[] com []
 or [],[] xor [],[]

 BN.2.4 Program Control Instructions

 call [] djnz [],[]
 iret jp CC,[]
 jr CC,[] ret

 BN.2.5 Bit Manipulation Instructions

 tcm [],[] tm [],[]
 and [],[] or [],[]
 xor [],[]

 BN.2.6 Block Transfer Instructions

 ldci [],[]

 BN.2.7 Rotate and Shift Instructions

 rl [] rlc []
 rr [] rrc []
 sra [] swap []

 ASZ8 ASSEMBLER PAGE BN-4
 Z8 INSTRUCTION SET

 BN.2.8 Cpu Control Instructions

 ccf
 di ei
 halt nop
 rcf scf
 srp []
 stop wait

 APPENDIX BO

 ASZ80 ASSEMBLER

 BO.1 .z80 DIRECTIVE

 Format:

 .z80

 The .z80 directive enables processing of only the z80 specific
 mnemonics. HD64180/Z180 mnemonics encountered without the .hd64
 directive will be flagged with an <o> error.

 The .z80 directive also selects the Z80 specific cycles
 count to be output.

 BO.2 .hd64 DIRECTIVE

 Format:

 .hd64

 The .hd64 directive enables processing of the HD64180/Z180
 specific mnemonics not included in the Z80 instruction set.
 HD64180/Z180 mnemonics encountered without the .hd64 directive
 will be flagged with an <o> error. A synonym of .hd64 is .z180.

 The .hd64 directive also selects the HD64180/Z180 specific
 cycles count to be output.

 ASZ80 ASSEMBLER PAGE BO-2
 THE .__.CPU. VARIABLE

 BO.3 THE .__.CPU. VARIABLE

 The value of the pre-defined symbol '.__.CPU.' corresponds
 to the selected processor type. The default value is 0 which
 corresponds to the default processor type. The following table
 lists the processor types and associated values for the ASZ80
 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .z80 0
 .hd64 / .z180 1

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 the variable type to global causing its definition to be output
 to the .rel file. The inclusion of the definition of the vari-
 able '.__.CPU.' might be a useful means of validating that
 seperately assembled files have been compiled for the same pro-
 cessor type. The linker will report an error for variables with
 multiple non equal definitions.

 BO.4 Z80 REGISTER SET AND CONDITIONS

 The following is a complete list of register designations
 and condition mnemonics:

 byte registers - a,b,c,d,e,h,l,i,r
 register pairs - af,af',bc,de,hl
 word registers - pc,sp,ix,iy

 C - carry bit set
 M - sign bit set
 NC - carry bit clear
 NZ - zero bit clear
 P - sign bit clear
 PE - parity even
 PO - parity odd
 Z - zero bit set

 ASZ80 ASSEMBLER PAGE BO-3
 Z80 INSTRUCTION SET

 BO.5 Z80 INSTRUCTION SET

 The following list specifies the format for each addressing
 mode supported by ASZ80:

 #data immediate data
 byte or word data

 n byte value

 rg a byte register
 a,b,c,d,e,h,l

 rp a register pair
 bc,de,hl

 (hl) implied addressing or
 register indirect addressing

 (label) direct addressing

 offset(ix) indexed addressing with
 an offset

 label call/jmp/jr label

 The terms data, n, label, and offset may all be expressions.

 Note that not all addressing modes are valid with every in-
 struction, refer to the Z80/HD64180/Z180 technical data for
 valid modes.

 The following tables list all Z80/HD64180/Z180 mnemonics
 recognized by the ASZ80 assembler. The designation [] refers to
 a required addressing mode argument.

 ASZ80 ASSEMBLER PAGE BO-4
 Z80 INSTRUCTION SET

 BO.5.1 Inherent Instructions

 ccf cpd
 cpdr cpi
 cpir cpl
 daa di
 ei exx
 halt neg
 nop reti
 retn rla
 rlca rld
 rra rrca
 rrd scf

 BO.5.2 Implicit Operand Instructions

 adc a,[] adc []
 add a,[] add []
 and a,[] and []
 cp a,[] cp []
 dec a,[] dec []
 inc a,[] inc []
 or a,[] or []
 rl a,[] rl []
 rlc a,[] rlc []
 rr a,[] rr []
 rrc a,[] rrc []
 sbc a,[] sbc []
 sla a,[] sla []
 sra a,[] sra []
 srl a,[] srl []
 sub a,[] sub []
 xor a,[] xor []

 ASZ80 ASSEMBLER PAGE BO-5
 Z80 INSTRUCTION SET

 BO.5.3 Load Instruction

 ld rg,[] ld [],rg
 ld (bc),a ld a,(bc)
 ld (de),a ld a,(de)
 ld (label),a ld a,(label)
 ld (label),rp ld rp,(label)
 ld i,a ld r,a
 ld a,i ld a,r
 ld sp,hl ld sp,ix
 ld sp,iy ld rp,#data

 ldd lddr
 ldi ldir

 BO.5.4 Call/Return Instructions

 call C,label ret C
 call M,label ret M
 call NC,label ret NC
 call NZ,label ret NZ
 call P,label ret P
 call PE,label ret PE
 call PO,label ret PO
 call Z,label ret Z
 call label ret

 BO.5.5 Jump and Jump to Subroutine Instructions

 jp C,label jp M,label
 jp NC,label jp NZ,label
 jp P,label jp PE,label
 jp PO,label jp Z,label

 jp (hl) jp (ix)
 jp (iy) jp label

 djnz label

 jr C,label jr NC,label
 jr NZ,label jr Z,label
 jr label

 ASZ80 ASSEMBLER PAGE BO-6
 Z80 INSTRUCTION SET

 BO.5.6 Bit Manipulation Instructions

 bit n,[]
 res n,[]
 set n,[]

 BO.5.7 Interrupt Mode and Reset Instructions

 im n
 im n
 im n
 rst n

 BO.5.8 Input and Output Instructions

 in a,(n) in rg,(c)
 ind indr
 ini inir

 out (n),a out (c),rg
 outd otdr
 outi otir

 BO.5.9 Register Pair Instructions

 add hl,rp add ix,rp
 add iy,rp

 adc hl,rp sbc hl,rp

 ex (sp),hl ex (sp),ix
 ex (sp),iy
 ex de,hl
 ex af,af'

 push rp pop rp

 ASZ80 ASSEMBLER PAGE BO-7
 Z80 INSTRUCTION SET

 BO.5.10 HD64180/Z180 Specific Instructions

 in0 rg,(n)
 out0 (n),rg

 otdm otdmr
 otim otimr

 mlt bc mlt de
 mlt hl mlt sp

 slp

 tst a
 tstio #data

 APPENDIX BP

 ASZ280 ASSEMBLER

 BP.1 ACKNOWLEDGMENT

 The ASZ280 cross assembler was written by John Coffman.

 John Coffman
 johninsd at gmail dot com

 The ASZ280 assembler is a completely table driven assem-
 bler. This assembler can process Z280 (default), HD64180
 (Z180), and Z80 code. The following processor specific assem-
 bler directives specify which processor to target and with
 specific instruction options when processing the input assembler
 files.

 BP.2 PROCESSOR SPECIFIC DIRECTIVES

 ASZ280 ASSEMBLER PAGE BP-2
 PROCESSOR SPECIFIC DIRECTIVES

 BP.2.1 .z80 Directive

 Format:

 .z80

 The .z80 directive enables processing of the Z80 specific
 mnemonics. Z180 (HD64180) and Z280 mnemonics will be flagged
 with an <o> error. Addressing modes not supported by the z80
 will be flagged with an <a> error.

 The .z80 directive also selects the Z80 specific cycles
 count to be output.

 BP.2.2 .z80u Directive

 Format:

 .z80u

 The .z80u directive enables processing of the Z80 specific and
 Z80 undocumented instructions. Z180 (HD64180) and Z280 mnemon-
 ics will be flagged with an <o> error. Addressing modes not
 supported by the z80 will be flagged with an <a> error.

 The .z80u directive also selects the Z80 specific cycles
 count to be output.

 BP.2.3 .z180 Directive

 Format:

 .z180

 The .z180 directive enables processing of the Z180 specific
 mnemonics not included in the Z80 instruction set. Addressing
 modes not supported by the Z180 will be flagged with an <a> er-
 ror. A synonym of .z180 is .hd64.

 The .z180/.hd64 directive also selects the Z180/HD64180
 specific cycles count to be output.

 ASZ280 ASSEMBLER PAGE BP-3
 PROCESSOR SPECIFIC DIRECTIVES

 BP.2.4 .z280 Directive

 Format:

 .z280

 The .z280 directive enables processing of the Z280 specific
 mnemonics, includes i/o instructions, but excludes all
 privileged instructions. Addressing modes not supported by the
 Z280 will be flagged with an <a> error.

 The .z280 directive also selects the Z280 specific cycles
 count to be output.

 BP.2.5 .z280n Directive

 Format:

 .z280n

 The .z280n directive enables processing of the Z280 specific
 mnemonics, excludes i/o instructions, and excludes all
 privileged instructions. Addressing modes not supported by the
 Z280 will be flagged with an <a> error.

 The .z280n directive also selects the Z280 specific cycles
 count to be output.

 BP.2.6 .z280p Directive

 Format:

 .z280p

 The .z280p directive enables processing of the Z280 specific
 mnemonics, includes i/o instructions, and includes all
 privileged instructions. Addressing modes not supported by the
 Z280 will be flagged with an <a> error.

 The .z280p directive also selects the Z280 specific cycles
 count to be output.

 ASZ280 ASSEMBLER PAGE BP-4
 PROCESSOR SPECIFIC DIRECTIVES

 BP.2.7 The .__.CPU. Variable

 The value of the pre-defined symbol '.__.CPU.' corresponds to
 the selected processor type. The following table lists the pro-
 cessor types and associated values for the ASZ280 assembler:

 Processor Type .__.CPU. Value
 -------------- --------------
 .z80 0x83
 .z80u 0x87
 .z180/.hd64 0x8B
 .z280 0x33
 .z280n 0x11
 .z280p 0xF3

 The variable '.__.CPU.' is by default defined as local and
 will not be output to the created .rel file. The assembler com-
 mand line options -g or -a will not cause the local symbol to be
 output to the created .rel file.

 The assembler .globl directive may be used to change the
 variable type to global causing its definition to be output to
 the .rel file. The inclusion of the definition of the variable
 '.__.CPU.' might be a useful means of validating that seperately
 assembled files have been compiled for the same processor type.
 The linker will report an error for variables with multiple non
 equal definitions.

 ASZ280 ASSEMBLER PAGE BP-5
 PROCESSOR SPECIFIC DIRECTIVES

 BP.3 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.1 Registers

 Recognized Registers

 8-bit data registers: A,B,C,D,E,H,L
 16-Bit data registers: BC,DE,HL,IX,IY
 Accumulator/Flag registers: AF,AF'
 Program Counter: PC
 Stack Pointer: SP

 BP.3.2 Condition Codes

 Condition Codes for Jump, Call, and Return Instructions

 NZ - Not Zero zero bit clear
 Z - Zero zero bit set
 NC - No Carry carry bit clear
 C - Carry carry bit set
 NV - No Overflow overflow bit clear
 V - Overflow overflow bit set
 PE - Parity Even (overflow bit set)
 PO - Parity Odd (overflow bit clear)
 NS - No Sign sign bit clear
 P - Plus sign bit clear
 S - Sign sign bit set
 M - Minus sign bit set

 Condition Codes for Jump Relative Instruction

 NZ - Not Zero zero bit clear
 Z - Zero zero bit set
 NC - No Carry carry bit clear
 C - Carry carry bit set

 ASZ280 ASSEMBLER PAGE BP-6
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3 Z280 Instructions

 The following list of instructions (with addressing modes)
 are available in the Z280 assembler mode.

 BP.3.3.1 Instruction Modes -

 Addressing Mode Notes

 R 8-bit registers: A,B,C,D,E,H,L

 RX 16-Bit registers: BC,DE,HL,IX,IY,SP

 IM Immediate #byte, #word

 IR Indirect Register (HL)

 DA Direct Address (address)

 X Indexed (HL+ofst),ofst(HL)
 (IX+ofst),ofst(IX)
 (IY+Ofst),ofst(IY)

 SX Short Index (HL+ofst),ofst(HL)
 (IX+ofst),ofst(IX)
 (IY+ofst),ofst(IY)
 -128 <= ofst <= 127

 RA PC Relative Address [address]
 8-bit offset: -128 <= ofst <= 127
 16-bit offset: -32768 <= ofst <= 32767

 SR Stack Pointer Relative (SP+ofst)

 BX Base Index (HL+IX),(HL+IY),(IX+IY)

 ASZ280 ASSEMBLER PAGE BP-7
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3.2 Argument Formats -

 The instruction format arguments are described in this
 table. Note that not all addressing arguments are valid for
 every mode, refer to the z280 technical data for valid operands.

 Argument Formats

 A,B,C,D,E,H,L,AF,AF' Explicit 8-Bit Register

 BC,DE,HL,IX,IY,SP,PC Explicit 16-Bit Register

 DEHL Explicit 32-Bit Register

 r A,B,C,D,E,H,L Register

 rr BC, DE, or HL Register

 src Any Valid Source Argument
 (Instruction Dependent)

 dst Any Valid Destination Argument
 (Instruction Dependent)

 n Byte Argument

 nn Word Argument

 XY IX or IY Register

 XX HL, IX, or IY Register

 cc Condition Codes

 dat RST Number 0 <= dat <= 7

 p IM Interrupt Mode 0 <= p <= 3

 ASZ280 ASSEMBLER PAGE BP-8
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3.3 8-Bit Load Group Instructions -
 Addressing Modes Available
 Format R RX IM IR DA X SX RA SR BX
 ------ --- --- --- --- --- --- --- --- --- ---
 EX A,src * * * * * * * * *
 EX H,L
 LD A,src * * * * * * * * * *
 LD dst,A * * * * * * * * * *
 LD dst,n * * * * * * * * *

 LD r,src * * * * *
 LD dst,r * * * *
 LDUD A,src * *
 LDUD dst,A * *
 LDUP A,src * *
 LDUP dst,A * *
 EXTS A

 BP.3.3.4 16-Bit Load and Exchange Group Instructions -
 Addressing Modes Available
 Format R IM IR DA X SX RA SR BX
 ------ --- --- --- --- --- --- --- --- ---
 EX DE,HL
 EX XY,HL
 EX (SP),XX
 EX AF,AF'
 EXX

 LD XX,src * * * * * *
 LD dst,XX * * * * *
 LD RR,src * * * *
 LD dst,RR * * *
 LD dst,nn * * * *

 LD SP,src * * * * *
 LD dst,SP * * *
 LDA XX,src * * * * *
 POP dst * * * *
 PUSH src * * * * *

 ASZ280 ASSEMBLER PAGE BP-9
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3.5 Block Transfer and Search Group Instructions -
 Format Format
 ------ ------
 CPD LDD
 CPDR LDDR
 CPI LDI
 CPIR LDIR

 BP.3.3.6 8-Bit Arithmetic and Logic Group -
 Addressing Modes Available
 Format R RX IM IR DA X SX RA SR BX
 ------ --- --- --- --- --- --- --- --- --- ---
 ADC A,src * * * * * * * * * *
 ADD A,src * * * * * * * * * *
 AND A,src * * * * * * * * * *
 CP A,src * * * * * * * * * *
 CPL A
 DAA A

 DEC dst * * * * * * * * *
 DIV A,src * * * * * * * * *
 DIVU A,src * * * * * * * * *
 EXTS A
 INC dst * * * * * * * * *
 MULT A,src * * * * * * * * * *

 MULTU A,src * * * * * * * * * *
 NEG A
 OR A,src * * * * * * * * * *
 SBC A,src * * * * * * * * * *
 SUB A,src * * * * * * * * * *
 XOR A,src * * * * * * * * * *

 ASZ280 ASSEMBLER PAGE BP-10
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3.7 16-Bit Arithmetic Operation Instructions -
 Addressing Modes Available
 Format R IM IR DA X RA
 ------ --- --- --- --- --- ---
 ADC XX,src *
 ADD XX,src *
 AND XX,A
 ADDW HL,src * * * * *
 CPW HL,src * * * * *

 DECW dst * * * * *
 DIV DEHL,src * * * * *
 DIVU DEHL,src * * * * *
 EXTS HL
 INCW dst * * * * *

 MULT HL,src * * * * *
 MULTU HL,src * * * * *
 NEG HL
 SBC XX,src *
 SUBW HL,src * * * * *

 BP.3.3.8 Bit Manipulation, Rotate and Shift Group -
 Addressing Modes Available
 Format IR DA RA
 ------ --- --- ---
 BIT dst * * *
 RES dst * * *
 RL dst * * *
 RLA
 RLC dst * * *
 RLCA

 RLD *
 RR dst * * *
 RR A
 RRC dst * * *
 RRCA
 RRD *

 SET dst * * *
 SLA dst * * *
 SRA dst * * *
 SRL dst * * *
 TSET dst * * *

 ASZ280 ASSEMBLER PAGE BP-11
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3.9 Program Control Group Instructions -
 Addressing Modes Available
 Format IR DA RA
 ------ --- --- ---
 CALL cc,dst * * *
 CCF
 DJNZ dst *
 JAF dst *
 JAR dst *

 JP cc,dst * * *
 JR cc,dst *
 RET cc
 RST dat
 SC nn
 SCF

 BP.3.3.10 Program Control Group Instructions -
 Format Format
 ------ ------
 IN dst,(C) OUT (C),src
 IN A,(n) OUT (n),A
 INW HL,(C) OUTW (C),HL
 IND OUTD
 INDW OUTDW
 INDR OTDR
 INDRW OTDRW
 INI OUTI
 INIW OTIW
 INIR OTIR
 INIRW OTIRW
 TSTI (C)

 ASZ280 ASSEMBLER PAGE BP-12
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.3.3.11 CPU Control Group Instructions -
 Format Format
 ------ ------
 DI mask LDCTL dst,src
 EI mask NOP
 HALT PCACHE
 IM p RETI
 LD A,src RETIL
 LD src,A RETN

 BP.3.3.12 Extended Instructions -
 Format Format
 ------ ------
 EPUM src EPUF
 MEPU dst EPUI

 BP.3.4 Z280 Excution Cycles

 The instruction cycle timing was taken from Appendix E of
 the Z280 CPU manual. They are greatly influenced by the con-
 tents of the cache.

 Z280 Manual Appendix E Excerpt

 The autonomous operation of the three stages in the
 Z280 cpu instruction pipeline makes it difficult to
 calculate exact instruction execution times. Further-
 more, execution times are affected by cache activity;
 the current cache contents determine the number of ex-
 ternal memory transactions made during the fetch exe-
 cution of a given instruction.

 Thus all timings are approximate and should be looked upon
 as the smallest number of cycles.

 ASZ280 ASSEMBLER PAGE BP-13
 Z280 ADDRESSING AND INSTRUCTIONS

 BP.4 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 The following list specifies the format for each
 Z80/HD64180 addressing mode supported by ASZ280:

 #data immediate data
 byte or word data
 n byte value
 rg a byte register
 a,b,c,d,e,h,l
 rp a register pair
 bc,de,hl
 (hl) implied addressing or
 register indirect addressing
 (label) direct addressing
 (ix+offset) indexed addressing with
 offset(ix) an offset
 label call/jmp/jr label

 The terms data, n, label, and offset, may all be expressions.
 The terms dir and offset are not allowed to be external refer-
 ences. The following tables list all Z80/HD64180 mnemonics
 recognized by the ASRAB assembler. The designation [] refers to
 a required addressing mode argument.

 Note that not all addressing modes are valid with every in-
 struction, refer to the Z80/HD64180 technical data for valid
 modes.

 BP.4.1 Inherent Instructions

 ccf cpd
 cpdr cpi
 cpir cpl
 daa di
 ei exx
 halt neg
 nop reti
 retn rla
 rlca rld
 rra rrca
 rrd scf

 ASZ280 ASSEMBLER PAGE BP-14
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BP.4.2 Implicit Operand Instructions

 adc a,[] adc []
 add a,[] add []
 and a,[] and []
 cp a,[] cp []
 dec a,[] dec []
 inc a,[] inc []
 or a,[] or []
 rl a,[] rl []
 rlc a,[] rlc []
 rr a,[] rr []
 rrc a,[] rrc []
 sbc a,[] sbc []
 sla a,[] sla []
 sra a,[] sra []
 srl a,[] srl []
 sub a,[] sub []
 xor a,[] xor []

 BP.4.3 Load Instruction

 ld rg,[] ld [],rg
 ld (bc),a ld a,(bc)
 ld (de),a ld a,(de)
 ld (label),a ld a,(label)
 ld (label),rp ld rp,(label)
 ld i,a ld r,a
 ld a,i ld a,r
 ld sp,hl ld sp,ix
 ld sp,iy ld rp,#data

 ldd lddr
 ldi ldir

 ASZ280 ASSEMBLER PAGE BP-15
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BP.4.4 Call/Return Instructions

 call C,label ret C
 call M,label ret M
 call NC,label ret NC
 call NZ,label ret NZ
 call P,label ret P
 call PE,label ret PE
 call PO,label ret PO
 call Z,label ret Z
 call label ret

 BP.4.5 Jump and Jump to Subroutine Instructions

 jp C,label jp M,label
 jp NC,label jp NZ,label
 jp P,label jp PE,label
 jp PO,label jp Z,label

 jp (hl) jp (ix)
 jp (iy) jp label

 djnz label

 jr C,label jr NC,label
 jr NZ,label jr Z,label
 jr label

 BP.4.6 Bit Manipulation Instructions

 bit n,[]
 res n,[]
 set n,[]

 BP.4.7 Interrupt Mode and Reset Instructions

 im n
 im n
 im n
 rst n

 ASZ280 ASSEMBLER PAGE BP-16
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BP.4.8 Input and Output Instructions

 in a,(n) in rg,(c)
 ind indr
 ini inir

 out (n),a out (c),rg
 outd otdr
 outi otir

 BP.4.9 Register Pair Instructions

 add hl,rp add ix,rp
 add iy,rp

 adc hl,rp sbc hl,rp

 ex (sp),hl ex (sp),ix
 ex (sp),iy
 ex de,hl
 ex af,af'

 push rp pop rp

 BP.4.10 HD64180 Specific Instructions

 in0 rg,(n)
 out0 (n),rg

 otdm otdmr
 otim otimr

 mlt bc mlt de
 mlt hl mlt sp

 slp

 tst a
 tstio #data

 ASZ280 ASSEMBLER PAGE BP-17
 Z80/HD64180 ADDRESSING AND INSTRUCTIONS

 BP.4.11 Z80 Undocumented Instructions

 op = adc, add, and, cp, or, sbc, sub, xor
 op a,ixh op a,ixl
 op a,iyh or a,iyl

 op = dec, inc
 op ixh inc ixl
 op iyh inc iyl

 in ixh,(c) in ixl,(c)
 in iyh,(c) in iyl,(c)

 ld ixh,r r = a, b, c, d, e
 ld ixl,r r = a, b, c, d, e

 ld iyh,r r = a, b, c, d, e
 ld iyl,r r = a, b, c, d, e

 ld r,ixh r = a, b, c, d, e
 ld r,ixl r = a, b, c, d, e

 ld r,iyh r = a, b, c, d, e
 ld r,iyl r = a, b, c, d, e

 ld ixh,#n ld ixl,#n
 ld iyh,#n ld iyl,#n

 ld ixh,ixh ld ixl,ixh
 ld ixh,ixl ld ixl,ixl
 ld iyh,iyh ld iyl,iyh
 ld iyh,iyl ld iyl,iyl

 sll offset(ix) sll offset(iy)
 sll a sll b
 sll c sll d
 sll e sll h
 sll l

	Title Page
	Table of Contents

	Preface
	End User License Agreement
	Abstract
	Chapter 1
	The Assembler
	The ASxxxx Assemblers
	Source Program Format
	Symbols And Expressions
	General Assembler Directives
	.module
	.title
	.sbttl
	.list
	.nlist
	.page
	.msg
	.error
	.byte
	.db
	.fcb
	.word
	.dw
	.fdb
	.3byte
	.triple
	.4byte
	.quad
	.blkb
	.ds
	.rmb
	.rs
	.blkw
	.blk3
	.blk4
	.ascii
	.str
	.fcc
	.ascis
	.strs
	.asciz
	.strz
	.assume
	.radix
	.even
	.odd
	.bndry
	.area
	.bank
	.org
	.globl
	.local
	.equ
	.gblequ
	.lclequ
	.if
	.else
	.endif
	.iff
	.ift
	.iftf
	.ifxx
	.ifdef
	.ifndef
	.ifb
	.ifnb
	.ifidn
	.ifdif
	Alternate .if Forms
	Immediate .if Forms
	.include
	.define
	.undefine
	.setdp
	.16bit
	.24bit
	.32bit
	.msb
	.lohi
	.hilo
	.end

	Invoking ASxxx
	Errors
	Listing File
	Symbol Table File
	Object File
	Hint File

	Chapter 2
	The Macro Processor
	Defining Macros
	.macro
	.endm
	.mexit

	Calling Macros
	Arguents In Macro Definitions and Macro Calls
	Macro Attribute Directives
	.narg
	.nchr
	.ntype
	.nval

	Indefinite Repeat Block Directives
	.irp
	.irpc

	Repeat Block Directive
	.rept

	Macro Deletion Directive
	.mdelete

	Macro Invocation Details
	Controlling Macro Listings
	Building a Macro Library
	Example Macro Cross Assemblers

	Chapter 3
	The Linker
	Aslink Relocating Linker
	Invoking Aslink
	Library Path(s) and File(s)
	Aslink Processing
	ASxxxx Version 5.XX (4.XX) Linking
	ASxxxx Version 3.XX Linking
	Hint File Format And Relocated Listings
	Intel IHX Output Format (16-Bit)
	Intel I86 Output Format (24 or 32-Bit)
	Motorola S1-S9 Output Format (16-Bit)
	Motorola S2-S8 Output Format (24-Bit)
	MotorolaS3-S7 Output Format (32-Bit)
	Tandy Color Computer Disk Basic Format

	Chapter 4
	Building ASxxxx and Aslink
	Building With Linux
	Building With Cygwin
	Building With DJGPP
	Building With Turbo C++ 3.0
	Building With MS Visual C++ 6.0
	Building With MS VS-2005
	Building With MS VS-2010
	Building With MS VS-2103
	Building With MS VS-2015
	Building With Open Watcom V1.9
	Building With Symantec C/C++ V7.2
	The _clean.bat And _prep.bat Files

	Appendixes
	Asxscn File Scanner
	Asxcnv Listing Converter
	S19OS9 Conversion Utility
	Background
	Creating An OS9 Module
	The Conversion Utility

	Release Notes
	Contributors
	ascheck
	as1802
	as2650
	as430
	as6100
	as61860
	as6500
	as6800
	as6801
	as6804
	as6805
	as6808
	as6809
	as6811
	as6812
	as6816
	as740
	as78k0
	as78k0s
	as8008
	as8008s
	as8048
	as8051
	as8085
	as8x300
	as8xcxxx
	asavr
	asez80
	asf2mc8
	asf8
	asgb
	ash8
	asm8c
	aspic
	asrab
	asscmp
	asst6
	asst7
	asst8
	asz8
	asz80
	asz280

