
Chris Lomont, www.lomont.org, v0.1, October 2008

1

Pac-Man Emulation Guide v0.1, Oct 2008

This document is a reference for the Pac-Man video game arcade hardware, mainly written to document

my findings as I create a Pac-Man emulator for learning purposes.

The information was gathered from the Internet and my own investigations and was merged and edited

into this document. There are various red TODOs left in the document where I hope to add or clarify

material.

This was written by Chris Lomont in Oct 2008. If you have comments or fixes then email me at (my first

name) at lomont.org. Also check out my website www.lomont.org.

To start, Figure 1 shows a Pac-Man “attract” screen and the start of a level.

Figure 1 – Two views of Pac-Man

http://www.lomont.org/
http://www.lomont.org/

Chris Lomont, www.lomont.org, v0.1, October 2008

2

Introduction

Throughout this document decimal numbers appear as usual, and hexadecimal numbers are suffixed

with an ‘h’. For example 1K is 1024 bytes = 400h bytes.

Pac-Man hardware is at the highest level:

 Main CPU : Z80A at 3.072 MHZ

 ROM: 16K of ROM in four 4K chips

 RAM: almost 2K of working RAM

 Video:

o 2K of RAM as follows

 1K holds tile information.

 1K holds per tile palette indices.

o The visible screen is 28x36 tiles.

o Each tile is an 8x8 pixel 4-color image from 16 possible colors.

o Video resolution is thus 224x288 pixels.

o Eight 16x16 pixel hardware sprites, each with a 4-color palette from 16 possible colors.

o 60.61 frames per second (60.61fps).

 Sound Chip : Custom monophonic 3-voice 4-bit Wave Sound Generator

Z80

The heart of the Pac-Man arcade machine is the 8-bit Z80 Central Processing Unit (CPU). It was released

in July 1976, borrowing ideas from the Intel 8080. In fact it was designed to be binary compatible with

the 8080.

The Pac-Man Z80 runs at 3.072 MHZ.

One important feature is that it addresses 16 bits of memory, so all Pac-Man addresses must lie in the

range 0-65535 (0000h-FFFFh). Pac-Man actually uses less than half of this.

The Z80 also supports three interrupt modes, although the game only uses one, the so-called “mode 2”

set via the Z80 instruction “IM 2.” An emulator must support port 0 in hardware, which is used to store a

byte (used to form an address for an interrupt vector) which must be returned when triggering an

interrupt. See the section on interrupts.

Memory Map

All hardware is memory-mapped, that is, can be accessed by reading and writing memory addresses

from the CPU.

Chris Lomont, www.lomont.org, v0.1, October 2008

3

The game ROM uses the lowest 16K of memory, followed by 2K of video memory for tile selection and

per tile palettes (1K each), and then a little less than 2K of general purpose RAM. This is followed at

address 5000h with 256 bytes of memory-mapped hardware devices such as counters, sound hardware,

and joystick switches.

Addresses Bytes Description

0000h-3FFFh 16,384 Game ROM in four 1K chips:
0000h-0FFFh pacman.6e
1000h-1FFFh pacman.6f
2000h-2FFFh pacman.6h
3000h-3FFFh pacman.6j

4000h-43FFh 1024 Video RAM (tile information)
4400h-47FFh 1024 Video RAM (tile palettes)
4800h-4FEFh 2032 RAM
4FF0h-4FFFh 16 Sprite #, x and y flip bits (write only). 8 pairs of 2 bytes:

First byte is sprite number 0-31, (bits 2-7), X flip (bit1), Y flip(bit 0)
Second byte is sprite palette

Memory Mapped Registers*

5000h-503Fh read 1 IN0 (joystick and coin slot) (each byte returns same value)
5000h write 1 Interrupt enable (bit 0: 0 = disabled, 1 = enabled)
5001h write 1 Sound enable (bit 0: 0 = disabled, 1 = enabled)
5002h write 1 ??? Aux board enable?
5003h 1 Flip screen (bit 0: 0 = normal, 1 = flipped)
5004h 1 1 player start lamp (bit 0: 0 = on, 1 = off)
5005h 1 2 players start lamp (bit 0: 0 = on, 1 = off)
5006h 1 Coin lockout (bit 0: 0 = unlocked, 1 = locked)
5007h 1 Coin counter (trigger by changing bit 0 from 0 to 1)
5040h-507Fh read 64 IN1 (joystick and start buttons) (each byte returns same value)
5040h-5045h write 6 Sound voice 1
 5040-5044 – accumulator (low nibbles, used by H/W only)
 5045 – waveform (low nibble)
5046h-504Ah write 5 Sound voice 2, laid out like voice 1, missing low accumulator nibble
504Bh-504Fh write 5 Sound voice 3, laid out like voice 1, missing low accumulator nibble
5050h-5054h write 5 Voice 1 frequency (low nibbles)
5055h write 1 Voice 1 volume (low nibble)
5056h-505Ah write 5 Voice 2 frequency and volume, laid out like voice 1
505Bh-505Fh write 5 Voice 3 frequency and volume, laid out like voice 1
5060h-506Fh write 16 Sprite x, y coordinates
5080h-50BFh read 64 Dip Switch Settings (each byte returns same value)
50C0h-50FF write 64 Watchdog reset (each byte has the same function)

Table 1 - Pac-Man memory map

* Note some addresses have different read and write behavior.

Chris Lomont, www.lomont.org, v0.1, October 2008

4

ROMs

Pac-Man hardware needs various Read-Only-Memory chips to function. These hold program code, color

and palette definitions, sprite and tile images, and sound waveforms. There are various sets from

different manufacturers and countries.

Table 2 lists the ten ROMs needed to run Pac-Man. The filenames are from MAME1 and come from the

physical board description. These are for the Midway2 1980 version of Pac-Man.

Filename ROM usage Bytes Comments CRC3

pacman.6e Code ROM1 4096 4K of code C1E6AB10
pacman.6f Code ROM2 4096 4K of code 1A6FB2D4
pacman.6h Code ROM3 4096 4K of code BCDD1BEB
pacman.6j Code ROM4 4096 4K of code 817D94E3
82s123.7f Color ROM 32 32 one-byte colors 2FC650BD
82s126.4a Palette ROM 256 64 four-byte palettes 3EB3A8E4
pacman.5e Tile ROM 4096 256 8x8 pixel tile image 0C944964
pacman.5f Sprite ROM 4096 64 16x16 sprite images 958FEDF9
82s126.1m Sound ROM 1 256 8 waveforms A9CC86BF
82s126.3m Sound ROM 2 256 8 waveforms 77245B66

Table 2 – Pac-Man ROMs

Obtaining ROMs
These ROM sets can be found on the internet and in commercial emulators such as Microsoft Arcade

Pocket Pack. Since they are copyrighted by the original owners, you should obtain a legal copy from an

emulator or purchase a real Pac-Man machine from EBay! You also could purchase a legal emulator,

such as the one mentioned, and strip out the ROMs.

Code ROMs
The four code ROMs are unencrypted binary Z80 code. Disassembled versions are on the web, although

they are poorly commented. TODO – finish commenting disassembly and post?

Color ROM
Colors are defined in a 32-entry palette ROM (82s123.7f) where each 8-bit entry stores a 3-bit value for

each of red and green and a 2-bit value for blue. The hardware maps these values through resistors of

value 1000s ohm, 470 ohms, and 220 ohms, dropping the 1000 ohm resistor for blue4. Thus Pac-Man

hardware can use 32 colors, however the ROM (and hence the game) only contains 16 colors in the

lower 16 bytes; the upper 16 bytes are zeros for all black.

1
 MAME = Multi-Arcade Machine Emulator. http://en.wikipedia.org/wiki/MAME

2
 TODO – more ROMsets?

3
 TODO – CRC type?

4
 I think this is correct. TODO – check this.

http://en.wikipedia.org/wiki/MAME

Chris Lomont, www.lomont.org, v0.1, October 2008

5

Each color entry corresponds to color intensity on the output hardware. For a fixed voltage V, current

(giving intensity) is proportional to 1/Resistance. The maximum current is then

𝑉

220
+

𝑉

470
+

𝑉

1000
=

3967 𝑉

517000

The highest intensity, 3967, is scaled to the highest color-channel value FFh. Noting

1

220
=

2350

517000

1

470
=

1100

517000

1

1000
=

517

517000

then the 220 ohm resistor (and the corresponding bit) gives a weight of 2350 * FFh/3967 =97h. Similarly

470 ohm gives 47h and 1000 gives 21h.

Using this to compute the output RGB values gives the weights 97h, 47h, and 21h. Since the blue

channel only has 2 bits with 470 and 220 ohm resistors, similar calculations give weights 51h and AEh

respectively. This is summarized in Table 3.

Bit Color Connected to resistor Weight

0 Red (Least amount) 1000 ohm 21h
1 Red 470 ohm 47h
2 Red (Most amount) 220 ohm 97h
3 Green (Least amount) 1000 ohm 21h
4 Green 470 ohm 47h
5 Green (Most amount) 220 ohm 97h
6 Blue 470 ohm 51h
7 Blue 220 ohm AEh

Table 3 – Color ROM bits

The first byte in the ROM is color 0, the second byte is color 2, etc. Although the ROM has space for 32

colors, only the first 16 are used, with the remaining 16 bytes being 0 which is black. The first 16 colors

are shown in Figure 2, and the corresponding RGB values (0-255 range) are

{0,0,0}, {255,0,0}, {222,151,81}, {255,184,255}, {0,0,0}, {0,255,255}, 71,184,255 , 255,184,81

 0,0,0 , 255,255,0 , 0,0,0 , 33,33,255 , 0,255,0 , {71,184,174}, {255,184,174}, {222,222,255}

Figure 2 – Pac-Man Colors

Chris Lomont, www.lomont.org, v0.1, October 2008

6

For some reason four of the entries are black5.

Palette ROM
Each palette in the 256 byte palette ROM (82s126.4a) consists of 4 bytes, so this ROM stores 64

palettes. The first four bytes are palette 0, the next four bytes are palette 1, etc. The values in each entry

reference a color from the color ROM. Since the color ROM only uses 16 colors, each byte only uses the

lower 4 bits to store a number 0-15. Finally, only the first 32 palettes are not completely black, and of

these several are all black.

Figure 3 shows the first 32 palettes, left to right, one palette per column. Palette color 0 is the bottom

and palette color 3 is the top. By inspection the ghost palettes are 1, 3, 5, and 7.

Figure 3 – Pac-Man Palettes

Tile (Character) ROM
The background, scores, bonus items, and dots are drawn on a static background using images from the

4096 byte tile ROM (pacman.5e). Figure 4 shows the images decoded from the tile ROM using palette 1.

Each tile is an 8x8 pixel image, stored as 2 bits per pixel, thus using 16 bytes per tile. The 4096 byte ROM

thus holds 256 tiles, including a character font and two sets of differently spaced digits.

Drawing a tile uses a byte in Tile RAM to select one of the 256 four-color tiles to display, and also uses a

byte in the Palette RAM to select the palette used to color the tile.

Decoding images from the Tile ROM is slightly messy. Each byte stores 4 pixels, but they are stored in

bitplanes. Thus the least significant bit of each pixel is stored in the lower four bits of the byte, and the

most significant bit of each pixel is stored in the higher 4 bits of the byte (see Table 4).

Bit Usage

0 Bit 0 of pixel #1
1 Bit 0 of pixel #2
2 Bit 0 of pixel #3
3 Bit 0 of pixel #4
4 Bit 1 of pixel #1
5 Bit 1 of pixel #2
6 Bit 1 of pixel #3
7 Bit 1 of pixel #4

Table 4 – Tile ROM byte layout

5
 TODO – figure out why.

Chris Lomont, www.lomont.org, v0.1, October 2008

7

The resulting 4 pixels from each byte are vertical strips. The first 8 bytes draw the lower half of the tile,

left to right, top to bottom. The last 8 bytes defining the tile draw the top half of the tile6. The images

are stored in columns since the Pac-Man hardware has the screen rotated 90 degrees, and reading them

in this order results in easier scanline drawing in hardware (TODO - conjecture!?).

Figure 4 – Pac-Man tiles in the tile ROM

Sprite ROM
The 4096 byte Sprite ROM (pacman.5f) stores 16x16 pixel sprites. Each pixel uses 2 bits, resulting in each

sprite using 64 bytes of ROM. 4096/64 = 64 sprites stored in ROM. Figure 5 shows the decoded sprites

6
 TODO – check this is correct.

Chris Lomont, www.lomont.org, v0.1, October 2008

8

with sprites 0-7 across the top, etc. The image is drawn using palette 1 which is black, light gray, blue,

and red.

Figure 5 – Pac-Man sprite ROM

Decoding the sprites works similarly to decoding the tiles. Each byte represents 4 pixels in a column,

stored low bits then high bits just like the tiles. Each 8 bytes draw a strip of 8x4 pixels, just like tiles.

These 8 strips are then arranged

5 1

6 2

7 3

4 0

The complete pixel ordering is then7

7
 TODO – check these orderings.

Chris Lomont, www.lomont.org, v0.1, October 2008

9

188 184 180 176 172 168 164 160 60 56 52 48 44 40 36 32
189 185 181 177 173 169 165 161 61 57 53 49 45 41 37 33
190 186 182 178 174 170 166 162 62 58 54 50 46 42 38 34
191 187 183 179 175 171 167 163 63 59 55 51 47 43 39 35
220 216 212 208 204 200 196 192 92 88 84 80 76 72 68 64
221 217 213 209 205 201 197 193 93 89 85 81 77 73 69 65
222 218 214 210 206 202 198 194 94 90 86 82 78 74 70 66
223 219 215 211 207 203 199 195 95 91 87 83 79 75 71 67
252 248 244 240 236 232 228 224 124 120 116 112 108 104 100 96
253 249 245 241 237 233 229 225 125 121 117 113 109 105 101 97
254 250 246 242 238 234 230 226 126 122 118 114 110 106 102 98
255 251 247 243 239 235 231 227 127 123 119 115 111 107 103 99
156 152 148 144 140 136 132 128 28 24 20 16 12 8 4 0
157 153 149 145 141 137 133 129 29 25 21 17 13 9 5 1
158 154 150 146 142 138 134 130 30 26 22 18 14 10 6 2
159 155 151 147 143 139 135 131 31 27 23 19 15 11 7 3

Sound ROMs
Sound is generated by playing waveforms stored in the two 256 byte Sound ROMs (82s126.1m and
82s126.3m). The sound hardware only takes 4-bit samples, so each byte entry has the top nibble set to
0. This gives in total 512 four-bit sound samples. These are organized into 16 waveforms, each 32
samples long, and each sample value from 0-15.

Ordering them from Sound ROM1 (82s126.1m) to Sound ROM2 (82s126.3m), the waveforms are shown
in Figure 6.

Figure 6 – Pac-Man Sound ROM waveforms

These are ordered 0-3 in the top row, left to right. The next row left to right is 4,5,6,7, etc. It seems the

last four are not used, and the previous four may also be unused8.

Video

8
 TODO – check this from the disassembly.

Chris Lomont, www.lomont.org, v0.1, October 2008

10

The video is drawn from two components: tiles and sprites. The hardware supports

 8 sprites that are 16x16 pixel images,

 a 28 wide by 36 tall grid of tiles, each capable holding an 8x8 pixel image.

Thus the effective pixel resolution is 224x288 (28*8 = 224, 36*8=288). The tiles are used to draw a static

background, and the sprites are used to draw moving items.

Layout
To understand how video is drawn, the mapping from memory address to screen locations is needed.

The following description works for both the 1K tile RAM 4000h-43FFh (each byte selects a tile to draw)

and the 1K palette RAM 4400h-47FFh.

The first 64 addresses draw two rows, right to left, top to bottom, along the bottom of the screen, each

row 32 tiles wide, with 4 of the tiles off-screen on both ends. Then the next 380h (896 decimal)

addresses fill in the main screen, top to bottom, right to left, using offsets from 40h to 3BFh. This gives a

28x32 tile center region. Finally the last 64 addresses in each bank draw two more 32 tile wide rows

along the top, right to left, top to bottom, again with 4 tiles off-screen. The off-screen locations could be

used to hide unused sprites, which are always on9. The result is a 28x36 tile visible screen. With each tile

8x8 pixels, this gives the 224x288 pixel resolution.

For clarity examine Figure 7 and Figure 8 for offsets. Figure 9 shows an overlaid Pac-Man screen.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 3DF 3DE 3DD 3DC 3DB 3DA 3D9 3D8 3D7 3D6 3D5 3D4 3D3 3D2 3D1 3D0 3CF 3CE 3CD 3CC 3CB 3CA 3C9 3C8 3C7 3C6 3C5 3C4 3C3 3C2 3C1 3C0

 3FF 3FE 3FD 3FC 3FB 3FA 3F9 3F8 3F7 3F6 3F5 3F4 3F3 3F2 3F1 3F0 3EF 3EE 3ED 3EC 3EB 3EA 3E9 3E8 3E7 3E6 3E5 3E4 3E3 3E2 3E1 3E0

 3A0 380 360 340 320 300 2E0 2C0 2A0 280 260 240 220 200 1E0 1C0 1A0 180 160 140 120 100 0E0 0C0 0A0 080 060 040

 3A1 381 361 341 321 301 2E1 2C1 2A1 281 261 241 221 201 1E1 1C1 1A1 181 161 141 121 101 0E1 0C1 0A1 081 061 041

 3A2 382 362 342 322 302 2E2 2C2 2A2 282 262 242 222 202 1E2 1C2 1A2 182 162 142 122 102 0E2 0C2 0A2 082 062 042

 3A3 383 363 343 323 303 2E3 2C3 2A3 283 263 243 223 203 1E3 1C3 1A3 183 163 143 123 103 0E3 0C3 0A3 083 063 043

 3A4 384 364 344 324 304 2E4 2C4 2A4 284 264 244 224 204 1E4 1C4 1A4 184 164 144 124 104 0E4 0C4 0A4 084 064 044

 3A5 385 365 345 325 305 2E5 2C5 2A5 285 265 245 225 205 1E5 1C5 1A5 185 165 145 125 105 0E5 0C5 0A5 085 065 045

 3A6 386 366 346 326 306 2E6 2C6 2A6 286 266 246 226 206 1E6 1C6 1A6 186 166 146 126 106 0E6 0C6 0A6 086 066 046

 3A7 387 367 347 327 307 2E7 2C7 2A7 287 267 247 227 207 1E7 1C7 1A7 187 167 147 127 107 0E7 0C7 0A7 087 067 047

 3A8 388 368 348 328 308 2E8 2C8 2A8 288 268 248 228 208 1E8 1C8 1A8 188 168 148 128 108 0E8 0C8 0A8 088 068 048

 3A9 389 369 349 329 309 2E9 2C9 2A9 289 269 249 229 209 1E9 1C9 1A9 189 169 149 129 109 0E9 0C9 0A9 089 069 049

 3AA 38A 36A 34A 32A 30A 2EA 2CA 2AA 28A 26A 24A 22A 20A 1EA 1CA 1AA 18A 16A 14A 12A 10A 0EA 0CA 0AA 08A 06A 04A

 3AB 38B 36B 34B 32B 30B 2EB 2CB 2AB 28B 26B 24B 22B 20B 1EB 1CB 1AB 18B 16B 14B 12B 10B 0EB 0CB 0AB 08B 06B 04B

 3AC 38C 36C 34C 32C 30C 2EC 2CC 2AC 28C 26C 24C 22C 20C 1EC 1CC 1AC 18C 16C 14C 12C 10C 0EC 0CC 0AC 08C 06C 04C

 3AD 38D 36D 34D 32D 30D 2ED 2CD 2AD 28D 26D 24D 22D 20D 1ED 1CD 1AD 18D 16D 14D 12D 10D 0ED 0CD 0AD 08D 06D 04D

 3AE 38E 36E 34E 32E 30E 2EE 2CE 2AE 28E 26E 24E 22E 20E 1EE 1CE 1AE 18E 16E 14E 12E 10E 0EE 0CE 0AE 08E 06E 04E

 3AF 38F 36F 34F 32F 30F 2EF 2CF 2AF 28F 26F 24F 22F 20F 1EF 1CF 1AF 18F 16F 14F 12F 10F 0EF 0CF 0AF 08F 06F 04F

 3B0 390 370 350 330 310 2F0 2D0 2B0 290 270 250 230 210 1F0 1D0 1B0 190 170 150 130 110 0F0 0D0 0B0 090 070 050

 3B1 391 371 351 331 311 2F1 2D1 2B1 291 271 251 231 211 1F1 1D1 1B1 191 171 151 131 111 0F1 0D1 0B1 091 071 051

 3B2 392 372 352 332 312 2F2 2D2 2B2 292 272 252 232 212 1F2 1D2 1B2 192 172 152 132 112 0F2 0D2 0B2 092 072 052

 3B3 393 373 353 333 313 2F3 2D3 2B3 293 273 253 233 213 1F3 1D3 1B3 193 173 153 133 113 0F3 0D3 0B3 093 073 053

 3B4 394 374 354 334 314 2F4 2D4 2B4 294 274 254 234 214 1F4 1D4 1B4 194 174 154 134 114 0F4 0D4 0B4 094 074 054

 3B5 395 375 355 335 315 2F5 2D5 2B5 295 275 255 235 215 1F5 1D5 1B5 195 175 155 135 115 0F5 0D5 0B5 095 075 055

 3B6 396 376 356 336 316 2F6 2D6 2B6 296 276 256 236 216 1F6 1D6 1B6 196 176 156 136 116 0F6 0D6 0B6 096 076 056

 3B7 397 377 357 337 317 2F7 2D7 2B7 297 277 257 237 217 1F7 1D7 1B7 197 177 157 137 117 0F7 0D7 0B7 097 077 057

 3B8 398 378 358 338 318 2F8 2D8 2B8 298 278 258 238 218 1F8 1D8 1B8 198 178 158 138 118 0F8 0D8 0B8 098 078 058

 3B9 399 379 359 339 319 2F9 2D9 2B9 299 279 259 239 219 1F9 1D9 1B9 199 179 159 139 119 0F9 0D9 0B9 099 079 059

 3BA 39A 37A 35A 33A 31A 2FA 2DA 2BA 29A 27A 25A 23A 21A 1FA 1DA 1BA 19A 17A 15A 13A 11A 0FA 0DA 0BA 09A 07A 05A

 3BB 39B 37B 35B 33B 31B 2FB 2DB 2BB 29B 27B 25B 23B 21B 1FB 1DB 1BB 19B 17B 15B 13B 11B 0FB 0DB 0BB 09B 07B 05B

 3BC 39C 37C 35C 33C 31C 2FC 2DC 2BC 29C 27C 25C 23C 21C 1FC 1DC 1BC 19C 17C 15C 13C 11C 0FC 0DC 0BC 09C 07C 05C

 3BD 39D 37D 35D 33D 31D 2FD 2DD 2BD 29D 27D 25D 23D 21D 1FD 1DD 1BD 19D 17D 15D 13D 11D 0FD 0DD 0BD 09D 07D 05D

 3BE 39E 37E 35E 33E 31E 2FE 2DE 2BE 29E 27E 25E 23E 21E 1FE 1DE 1BE 19E 17E 15E 13E 11E 0FE 0DE 0BE 09E 07E 05E

 3BF 39F 37F 35F 33F 31F 2FF 2DF 2BF 29F 27F 25F 23F 21F 1FF 1DF 1BF 19F 17F 15F 13F 11F 0FF 0DF 0BF 09F 07F 05F

 01F 01E 01D 01C 01B 01A 019 018 017 016 015 014 013 012 011 010 00F 00E 00D 00C 00B 00A 009 008 007 006 005 004 003 002 001 000

 03F 03E 03D 03C 03B 03A 039 038 037 036 035 034 033 032 031 030 02F 02E 02D 02C 02B 02A 029 028 027 026 025 024 023 022 021 020

Figure 7 – Pac-Man video address offsets

9
 TODO – check this. Perhaps a blank sprite is drawn?

Chris Lomont, www.lomont.org, v0.1, October 2008

11

Figure 8 –Pac-Man Video addresses

Chris Lomont, www.lomont.org, v0.1, October 2008

12

Figure 9 – Pac-Man screen overlaid on video addresses

Tiles
Each byte in Video RAM entry from 4000h-43FFh (Tile RAM) causes a tile from the Tile ROM to be

drawn. The corresponding byte in 4400h-47FFh (Palette RAM) selects a palette from the palette ROM to

apply to the tile, and this palette in turn references colors defined in the color ROM.

Chris Lomont, www.lomont.org, v0.1, October 2008

13

Each tile is an 8x8 pixel image; the resulting grid is a 28x36 grid of tiles. The first two rows, 32 bytes

each, are used to hold the fruit/credit/prize display at the screen bottom. The next 28 rows are rotated

as explained above, and contain the maze and game play area. The top two rows contain the score and

related information.

Sprites
The Pac-Man hardware supports 8 sprites; each is a 16x16 pixel image that can be drawn at any location.

Each can be flipped in the x and/or y directions, reducing the amount of sprite images stored in ROM.

For example, the left and right facing Pac-Man images are the same sprite with a different x-flip bit set.

The cocktail mode Pac-Man games flip the screen for two-player modes by flipping sprites and

reordering tiles.

The eight hardware sprites are programmed through addresses 4FF0h-4FFFh and 5060h-506Fh, listed in

Table 5. For each of the 8 sprites, the sprite image number 0-63, x-flip, y-flip, and palette are set through

the addresses shown in Table 6.

Sprite X-location Y-location Sprite#, flip-x, flip-y Palette

0 5060h 5061h 4FF0h 4FF1h
1 5062h 5063h 4FF2h 4FF3h
2 5064h 5065h 4FF4h 4FF5h
3 5066h 5067h 4FF6h 4FF7h
4 5068h 5069h 4FF8h 4FF9h
5 506Ah 506Bh 4FFAh 4FFBh
6 506Ch 506Dh 4FFCh 4FFDh
7 506Eh 506Fh 4FFEh 4FFFh

Table 5 – Pac-Man sprite addresses

Byte 0 Byte 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Sprite # 0-63 X
flip

Y
flip

 Palette entry 0-15

Table 6 – Sprite register definition

Each sprite can thus select a different palette. Color 0 in sprite images are drawn as transparent,

allowing the background tiles to show through. Setting the X and Y locations allows the sprites to be

positioned anywhere on the screen with pixel accuracy. They’re positioned offscreen when not needed.

Sprites are displayed in reverse order; higher numbered overlapped sprites are overwritten by lower

numbered sprites.

The X and Y locations denote the upper left corner of the sprite image. The screen coordinates start on

the lower right corner of the screen. Thus, including hidden coordinates, the lowest coordinate pair

where a 16x16 sprite is completely visible is location (31,16). If drawn lower, it wraps to the top of the

screen. The sprite does not show up on the top or bottom two rows where the video is laid out

differently, as explained the section on Video Layout. Visible pixel coordinates are in Figure 10.

Chris Lomont, www.lomont.org, v0.1, October 2008

14

Sound

The sound chip is a custom-made 3-channel Waveform Sound Generator (WSG). It can play three

simultaneous voices each with independent volume, frequency, and waveform. It is accessed using 4-bit

memory-mapped registers, whose addresses are in Table 7. The WSG runs at main CPU clock/32, i.e.,

3.072 MHz/32 = 96 kHz.

Register Address Notes

Voice 1 Waveform 5045h low 3 bits used – selects waveform 0-7 from ROM
Voice 1 Frequency 5050h-5054h 20 bits in low nibbles
Voice 1 Volume 5055h low nibble – 0 off to 15 loudest
Voice 1 Accumulator 5040h-5044h low nibbles, used by H/W only

Voice 2 Waveform 504Ah low 3 bits used – selects waveform 0-7 from ROM
Voice 2 Frequency 5056h-5059h 16 bits in low nibbles
Voice 2 Volume 505Ah low nibble – 0 off to 15 loudest
Voice 2 Accumulator 5046h-5049h low nibbles, used by H/W only

Voice 3 Waveform 504Fh low 3 bits used – selects waveform 0-7 from ROM
Voice 3 Frequency 505Bh-505Eh 16 bits in low nibbles
Voice 3 Volume 505Fh low nibble – 0 off to 15 loudest
Voice 3 Accumulator 504Bh-504Eh low nibbles, used by H/W only

Table 7 – Pac-Man sound registers.

Figure 10 – Screen coordinates

(31,256)

(31,16) (239,16)

(239,256)
Vertical wrap visible

Vertical wrap visible

H
o

ri
zo

n
ta

l w
ra

p
 h

id
d

en

H
o

ri
zo

n
ta

l w
ra

p
 h

id
d

en

Chris Lomont, www.lomont.org, v0.1, October 2008

15

Each register disregards the top nibble in each byte. The hardware supports 3 monophonic voices, each

with 16 volume levels and an independent choice of 8 pre-defined waveforms. One voice has 20 bits of

frequency choice, while the other two have 16 bits of frequency.

At each clock and for each voice the hardware performs the following steps:

1. Add the 20-bit (or 16-bit) voice frequency to the 20-bit (or 16-bit) accumulator.

2. Use the waveform 0-7 to lookup a 32-byte sample in the Sound ROM.

3. Take the top 5 bits of the accumulator to look up a nibble 0-31 in that sample.

4. Multiply that nibble by the volume nibble 0-15.

5. Send the result to the amplifier for output.

As a result, a voice is silent if the volume is zero.

Frequencies and counters are 20-bit or 16-bit values, depending on voice, and are stored in the least

significant nibble of 5 (or 4) bytes, with the least significant nibble in the lowest address. Voices #2 and

#3 do not implement the lowest nibble, which is always 0. Thus they have slightly lower dynamic range

than voice #1, which is used in the code for TODO.

Waveforms
As explained in the Sound ROM section, samples are stored as 32 entries of 4-bits each. They can be

selected by setting 0-7 in the appropriate voice.

Frequency
For each voice there are 4 registers controlling the tone. Voice #1 adds a 5th register allowing very low

frequencies.

How does this convert to notes for a musical scale? Using scientific pitch notation10 to denote middle C

as C4, then the first A higher in pitch is known as A440 (or as A4) since it is 440 Hz. Here’s a computation

of the values to put in the frequency register to get a 440 Hz tone for Voice #1.

To play the A4 tone (440 Hz) use sample 0, which is a pure sine tone and has one cycle per sample. If a

sample has two cycles per sample this example would need changed accordingly.

Starting with the 96 kHz accumulator rate, sample 0 produces a complete sound cycle every 32 samples.

To get 440 Hz, 440*32 = 14080 samples are needed per second. 96000 clocks per second / 14080

samples per second = 75/11 clocks per sample. Since the top 5 bits of 20 select the sample, there are 20-

5 = 15 bits representing “fractional” values. 2^15/(75/11) = 4806 = 12C6h.This needs stored in the

frequency of a voice to use sample 0 for a note with A4 = 440 Hz frequency.

Thus to get the register value 𝑉 for frequency 𝑓 using sample 0 use the formula

𝑉 =
 𝑓 × 32

96000
× 215 =

4096

375
𝑓

10

 http://en.wikipedia.org/wiki/Scientific_pitch_notation

http://en.wikipedia.org/wiki/Scientific_pitch_notation

Chris Lomont, www.lomont.org, v0.1, October 2008

16

Each octave is half/double the frequency of the one above/below it, so this gives counts for all octaves

of A. Since there are 12 half-steps per octave, to go one half-step higher simple multiply the value by

 2
12

. C3 is 3 half-steps up, so has frequency 440 × 2
12

3

= 523.251 Hz. This then corresponds to

𝑉 = 5715 =1653h.

Filling a note table gives Table 8.

 Octave

Note 0 1 2 3 4 5 6 7 8 9
C B3h 165h 2CAh 595h B2Ah 1653h 2CA7h 594Dh B29Ah 16535h
C#/Db BDh 17Ah 2F5h 5EAh BD4h 17A7h 2F4Eh 5E9Dh BD39h 17A72h
D C8h 191h 322h 644h C88h 190Fh 321Eh 643Dh C87Ah 190F3h
D#/Eb D4h 1A9h 352h 6A3h D46h 1A8Dh 3519h 6A33h D465h 1A8CBh
E E1h 1C2h 384h 708h E10h 1C21h 3842h 7083h E107h 1C20Dh
F EEh 1DDh 3BAh 773h EE7h 1DCDh 3B9Ah 7734h EE68h 1DCD0h
F#/Gb FDh 1F9h 3F2h 7E5h FC9h 1F93h 3F25h 7E4Bh FC95h 1F92Ah
G 10Ch 217h 42Eh 85Dh 10BAh 2173h 42E7h 85CDh 10B9Ah 21734h
G#/Ab 11Ch 237h 46Eh 8DCh 11B8h 2370h 46E1h 8DC2h 11B84h 23708h
A 12Ch 259h 4B1h 963h 12C6h 258Ch 4B18h 9630h 12C60h 258BFh
A#/Bb 13Eh 27Ch 4F9h 9F2h 13E4h 27C8h 4F8Fh 9F1Eh 13E3Ch 27C78h
B 151h 2A2h 545h A89h 1513h 2A25h 544Ah A894h 15128h 2A251h

Table 8 – Note frequency chart

Note that this is for the 5 register voices. For the 4 register voice round the low nibble up; this will result

in tones being slightly off.

Volume
Per-voice volume is a straightforward value 0-15, with 0 being muted to 15 being loudest.

Accumulator
The per-voice accumulator is used internally to select Sound ROM samples at some program defined

frequency. It is not clear if these can be read (or set?) from the code (TODO – find out).

Sound Enable Register
Register 50C0h is the sound enable register, enabling or disabling all voices simultaneously. Write 0 to

bit 0 of this register to disable sound and write 1 to bit 0 to enable sound.

Code
Sound register usage can be studied from the Pac-Man ROM sound routines through disassembly (if you

know how, can read Z80, etc.). The main sound code is at addresses 2CC1h-2F54h, the interrupt portion

is in two sections at 009Dh-00D2h (VBLANK1?) and 01B9h-01BCh (VBLANK2). Sound tables are at 3B30h-

3CDDh. Details are at http://www.vecoven.com/elec/pacman/code/pac_z80.html.

http://www.vecoven.com/elec/pacman/code/pac_z80.html

Chris Lomont, www.lomont.org, v0.1, October 2008

17

Some routine highlights:

The software updates the sound registers 60 times a second during the VBLANK. Each voice plays an

effect or a song.

An effect is encoded with eight bytes, and can be played on any voice.

0. Upper 3 bits are frequency shift, lower 3 bits are sample select.

1. Initial base frequency

2. Frequency increment

3. Upper bit causes reversal, lower 7 bits is duration.

4. Frequency increment added to base when repeat > 1

5. Repeat

6. Upper 4 bits denote volume adjust type, lower 4 bits is volume

7. Volume increment.

A song is a list of special bytes and tone information, and is played on voices 1 and 2 simultaneously.

A regular byte contains

 Upper 3 bits – log base 2 of duration

 Lower 4 bits – base frequency using lookup table

 Sometimes the lower 5 bits are assigned to W_DIR where the 5th bit has significance?!

Special song bytes include

 F0h followed by 2 bytes : address where song continues (jump in ROM)

 F1h followed by 1 byte : wave select

 F2h followed by one byte: frequency increment

 F3 followed by one byte: volume

 F4h followed by 1 byte : type

 FFh : end of song.

Interrupts

Interrupt Enable
Address 5000h is the interrupt enable register. Setting bit 0 to 0 disabled vertical blank (VBLANK)

interrupts, and setting bit 0 to 1 enables VBLANK interrupts.

VBLANK
This is the vertical blank signal, which is triggered each time the electron gun scans to the bottom of the

screen while drawing an image. This happens 60.61 times a second, which is every 16.67 milliseconds. If

interrupts are enabled, the Z80 CPU is sent an interrupt signal. Depending on the interrupt mode set in

the code different actions are taken.

Chris Lomont, www.lomont.org, v0.1, October 2008

18

Triggered by the VBLANK, the Z80 refreshes the sound frequencies, volumes, and waveforms.

In order for interrupts to work Port 0 has to behave properly.

Port 0
Port 0 from the CPU sets the interrupt vector. The code occasionally writes a byte to port 0, which has to

be returned when a VBLANK interrupt is triggered.

The Z80 in Pac-Man code runs in Interrupt mode 2 (using the Z80 opcode IM 2). The Z80 instructions LD

A,#CD; OUT (0),A for example set the interrupt address to I*256+CDh where I is the interrupt register.

Registers

Here are various memory-mapped registers not explained elsewhere, their uses and addresses.

Most of the control lines are normally closed, that is, the bit will be 1 when the switch is not pressed.

Thus, for example, the joystick up button bit will read 1 when the joystick is not pressed up and will read

0 when pressed up. This is true for the coin slots also.

Also there are a few sets of registers where each byte in a range has the same function. They are

marked in the memory map.

Watchdog Timer
Lots of hardware/software systems have a “watchdog timer,” and Pac-Man is no different. A watchdog

timer is a timer that the running software has to “kick” within a certain time period, or the watchdog

resets the system. This is so if the software hangs, the system is restarted by the watchdog. Vernacular

is to “kick the dog” when sending notification to the watchdog timer from software.

The watchdog timer at addresses 50C0h-50FFh (all bytes are the same function) constantly counts

upwards, resetting the machine when it reaches its limit. It counts each VLBANK on a four bit counter

(the 74LS161 at 9c on the Pac-Man board), so when it reaches 16 the carry from the counter will reset

the machine. This means the code has to kick the dog faster than about 4 times per second. Precisely it

needs reset before 16 frames of game elapse, at 60 frames per second. The Pac-Man code has relevant

instructions are scattered throughout the ROMs to kick the dog, about 3 times per frame, mostly with

zeroes, but occasionally (TODO) with a decreasing counter (TODO – why?).

Flip Screen
Flipped screen (write only byte at 5003h) is used in cocktail mode to flip the screen for the second

player, which flips the tiles only. The sprites are flipped by the game code. Bit 0 set to 0 creates a normal

screen; bit 0 set to 1 flips the screen.

IN0/IN1
The IN0 port (read-only byte at address 5000h) is connected to the joystick and coin slots. The credit

button works like a coin slots but adds a credit without incrementing the coin counter. The IN1 port

Chris Lomont, www.lomont.org, v0.1, October 2008

19

(read-only byte at address 5040h) is connected to the second player joystick (only on a cocktail table

version) and the start buttons.

Bit Description of port IN0 Description of port IN1

0 Joystick up (0=pressed, 1 = released) 2nd player joystick up (0=pressed, 1 = released)*
1 Joystick left (0=pressed, 1 = released) 2nd player joystick left (0=pressed, 1 = released)*
2 Joystick right (0=pressed, 1 = released) 2nd player joystick right (0=pressed, 1 = released)*
3 Joystick down (0=pressed, 1 = released) 2nd player joystick down (0=pressed, 1 = released)*
4 Rack advance (switch, automatically

advance to the next level, 0=on, 1 = off)
Board test (switch: 0 = on, 1 = off)

5 Coin slot 1 (trigger by changing from a 0
to 1)

One player start button (0=pressed, 1=released)

6 Coin slot 2 (trigger by changing from a 0
to 1)

Two player start button(0=pressed, 1=released)

7 Credit button (0 = pressed, 1 = released) Cabinet mode (0=table, 1 = upright)
Table 9 – Input ports

* cocktail table only.

Dip Switches
Memory addresses 5080h-50BFh are memory mapped to a set of 8 DIP switches on the main board.

Each byte is the same value, and is read only to read hardware settings on the board. On the hardware

these are 8 small switches, with “OFF” setting the bit to 0, and “On” setting the bit to 1.

Bit DIP Switch Description Values

0,1 Coins per game: 0=free play
1=1 coin per game
2=1 coin per 2 games
3=2 coins per game

2,3 # lives per game: 0=1 life
1=2 lives
2=3 lives
3=5 lives

4,5 Bonus score for extra life: 0=10000 points
1=15000 points
2=20000 points
3=none

6 Difficulty (jumper pad): 0 = hard
1 = normal

7 Ghost names(jumper pad): 0=alternate
1 = normal

Table 10 – Dip Switch Settings

The difficulty switch changes the algorithm the ghosts use, with the effect of making less places Pac-Man

can hide. There may be other changes also (TODO – find out?). Setting it breaks many patterns used in

gameplay. Default and alternate ghost names are in Table 11.

Chris Lomont, www.lomont.org, v0.1, October 2008

20

Color Image Default name (nickname) Alternate name (nickname)

Red

Shadow (Blinky) AAAAAAAA(BBBBBBBB)

Pink

Speedy (Pinky) CCCCCCCC (DDDDDDDD)

Blue

Bashful (Inky) EEEEEEEE (FFFFFFFF)

Orange

Pokey (Clyde) GGGGGGGG (HHHHHHHH)

Table 11 – Ghost names

Start Lamps
Pac-Man does not use start lamps accessed from registers 5004h (1 player) and 5005h (2 player).

Coin Lockout
Coin lockout mechanisms are hardware designed to keep more coins from being added during game

play, so that software does not have to check for new coins all the time. Pac-Man does not have this

hardware, so this is unused?! The Pac-Man code must watch for coin drops.

Coin Counters
Register 5007h triggers coin counting by triggering bit 0 from value 0 to 1.

Miscellaneous

Restart
The CPU starts executing at ROM address 0000h on restart.

ROM Checksum
ROM modifications are detected using a simple checksum routine at address 3000h, shown in Figure 11.

It sums all the bytes in each of the 4K banks, and the sum of the even bytes must be 0 and the sum of

the odd bytes must be 0. The last two bytes (TODO – right?) in each of the four ROMs are set to values

accomplishing this.

Chris Lomont, www.lomont.org, v0.1, October 2008

21

Figure 11 – ROM Checksums

Copy Protection
Some claim that the port 0 byte stored as explained in the Interrupt section is used for copy protection,

making it harder for bootleggers. However this is trivial to implement, and it seems more likely (without

further documentation) that this feature merely makes programming interrupts easier and more

flexible.

There is a false IM 1 handler at location 0038h which disables external interrupts (5000h), clears the coin

counter at 5007h, then infinite loops. The watchdog timer restarts the machine soon thereafter.

Incorrect implementations of the port 0 hardware will cause trouble. However port 0 behavior might be

designed to ease testing and troubleshooting of the hardware.

Tests
Turning on the game board test switch does diagnostics, shown in Figure 12. The first image shows bad

video ram, the center shows a passed test and DIP Switch settings, and the final one shows a grid for

testing the screen image. Different sounds are played on joystick movements, start buttons, and coin

slot toggles.

Chris Lomont, www.lomont.org, v0.1, October 2008

22

Figure 12 – Testing screens.

Easter Egg

There is an Easter Egg found in both the Midway and Namco ROMs. Hold down both player

start buttons and toggle the test switch to pull up the test grid. Then push the joystick 4 times up,

then 4 times left, then 4 times right then 4 times down. The result screen is in Figure 13.

Figure 13 – Easter Egg

Gameplay
TODO?!

Chris Lomont, www.lomont.org, v0.1, October 2008

23

Patterns

Since all ghost actions are determined by Pac-Man location and actions, patterns can be devised to pass

boards. They are often named based on the bonus item, such as “the Cherry Pattern” and “the 9th Key

Pattern.” Find them on the internet.

Bugs

Split-Screen

There is a bug in the fruit drawing routine, which causes board 256 to be a garbled mess (Figure 14) that

so far has been impassible despite enormous effort expended to conquer it. As demonstrated by Don

Hodges in his article “Splitting Apart the Split Screen,” it is caused by an error in the code. A counter

overflows on board 256, and the fruit-drawing routine (address 2B8Fh) trashes video memory by trying

to draw 256 fruits. This results in not enough dots on the screen for Pac-Man to eat and pass the level.

Don used a ROM disassembly to create a 9-byte in-place fix, which allows passing the level. At first

glance it seems his fix does not alter the ghost behavior, but will require more checking.

Figure 14 – Split screen bug on level 256

Ghost pass through

A bug occasionally allows Pac-Man to pass through a non-blue ghost unharmed. Several patterns exploit

this bug, and some can be seen on YouTube. An excellent one for 9th key patterns is shown in Figure 15.

See it on YouTube at http://www.youtube.com/watch?v=s82nzkZBaek&feature=related.

http://www.youtube.com/watch?v=s82nzkZBaek&feature=related
http://en.wikipedia.org/wiki/Image:Split_Screen_in_Pac_Man.gif

Chris Lomont, www.lomont.org, v0.1, October 2008

24

Figure 15 – Pac-Man passes through ghosts.

This bug is caused by the collision detection being done on an 8x8 grid, and when the Pac-Man enters a

ghost grid at the exact time slice the ghost enters the Pac-Man cell they will pass without contact.

Hiding places

Not quite a bug, there are patterns resulting in places you can leave Pac-Man and ghosts will never find

him. This is useful for breaks during marathon gaming sessions. See this YouTube pattern for an example

http://www.youtube.com/watch?v=S9vlCsjF3zU&feature=related.

When the ghosts are not closely pursuing Pac-Man, he can go to the spot immediately to the right and

up from his starting location, facing upwards. The ghosts will never find him, and will continue to

wander the board.

Up Direction

The MAME sourcecode states there is a minor bug in the up direction of Pac-Man animation: the circle

animation is 1 pixel too low.

Fixes

TODO – later ROM versions have fixed some of these items?

ROM Sets
There are various ROM sets in the wild, and different difficulty levels. A good way to determine which

set you have is the location Pac-Man dies in the attract mode animation.

There were three chip sets in the US. Each has two modes, easy and hard (or slow and fast as some call

them). The speed can be as high as 8x factory “slow” speeds.

http://www.youtube.com/watch?v=S9vlCsjF3zU&feature=related

Chris Lomont, www.lomont.org, v0.1, October 2008

25

The three chipsets are the “original” one, the Atlantic one, and the rare Manhattan chipset. Patterns are

different on each one, and most patterns on the internet are for the original ROMs.

ROM set Slow death location Fast death location Comment

Original Blue on square above lower
left energizer.

Orange at top of lower
right turn on board.

Atlantic Pinky kills Pac-Man right
above ghost pen

Lower right quadrant,
just left of the energizer.
No energizers get eaten.

Allows fast (42
second) 9th key
patterns.

Manhattan ???? TODO ???? TODO
Table 12 – ROM Versions

The Atlantic City chipset was developed to remove the hiding spot, but failed. Supposedly it allows a

player to “kill” a ghost by eating the ghost and an energizer at the same, resulting in that ghost not

coming back for the rest of that level.

Algorithms

Random numbers
TODO – explain the pseudo random number generator (PRNG) in AI.

Ghost Movement
Probably the most interesting algorithm is the ghost movement algorithm. This has been discussed

online, and there is disassembly of the algorithms available.

The first point is there are “scatter” and “gather” periods. The ghosts start a level in “gather” mode,

trying to reach Pac-Man. After a long time, they go to scatter mode, trying to avoid Pac-Man, and each

going to a different quadrant of the board. Gather/scatter repeats a few times, is time based, and

eventually ghosts return only to gather mode only.

The rough gather algorithms are:

Red: The only input is Pac-Man's location. Red attempts to reduce the distance between himself and

Pac-Man, by turning in the direction that will immediately reduce the greater of the horizontal or

vertical distance between himself and Pac-Man.

Pink: The input is four tiles in front of Pac-Man, which is then Pinky's "target." Pinky uses the same logic

as Red to reach this location. Thus reversing on Pinky will chase him away.

Blue: the inputs are the square two tiles in front of Pac-Man and the location of the Red ghost. Draw a

line from the Red ghost to the spot 2 tiles in front of Pac-Man, and extend that line twice as far in the

same direction. Blue’s target is that spot. Figure 16 shows Blue AI code disassembled.

Orange: Orange behaves differently is he is "near" (within 8 tiles of Pac-Man) or "far" (farther away than

8 tiles). “Far” mode duplicates Red’s logic. “Near” mode causes Orange to head to his corner of the

Chris Lomont, www.lomont.org, v0.1, October 2008

26

maze, lower left, where he circles. So if Pac-Man is in the lower left area quadrant, Orange will hassle

Pac-Man.

Edible ghost: The edible ghost uses a pseudo random number generator (PRNG) that creates a random

address from 0000h to 1FFFh, which is used to look up a byte, reading the last bits. These bits determine

the direction choices. This PRNG is reset at each level or life.

A small change to the code, such as never resetting this PRNG, would make Pac-Man level patterns

impossible, since every game would start with an unknown state.

Figure 16 – Blue AI code

Notes
 Each dot resides in its own tile so 1 tile equals the distance from one dot to the next.

 Pac-Man can turn corners faster than the ghosts can, so turning corners helps escape ghosts.

 Eating dots slows Pac-Man a little bit, so eating dots allows ghosts to catch up.

 The ghosts never go upwards into the two passages immediately above the pen.

Sources

Pac-Man
1. Scott Lawrence, “Programming For Pac-Man And Pengo Hardware”

http://www.cis.rit.edu/~jerry/Software/pengo

2. Alessandro Scotti, Pac-Man Instructional Emulator (PIE),

http://www.ascotti.org/programming/pie/pie.htm

3. Scott Lawrence, “Programming for the Pac-Man or Pengo arcade platforms”,

http://umlautllama.com/projects/pacdocs/#basics

http://www.cis.rit.edu/~jerry/Software/pengo
http://www.ascotti.org/programming/pie/pie.htm
http://umlautllama.com/projects/pacdocs/#basics

Chris Lomont, www.lomont.org, v0.1, October 2008

27

4. Frederic Vecoven, Pac-Man sound investigation,

http://www.vecoven.com/elec/pacman/pacman.html

5. Simon Owen, “Pac-Man Emulator,” http://simonowen.com/sam/articles/pacemu/

6. Don Hodges, “Splitting Apart the Split Screen,”

http://donhodges.com/how_high_can_you_get2.htm

7. Pac-Man from Wikipedia, http://en.wikipedia.org/wiki/Pac-Man

8. TODO http://www.widel.com/

9. TODO http://www.mamedb.com/game/pacman

10. TODO

http://www.twingalaxies.com/forums/viewtopic.php?t=7224&highlight=&sid=5a5d90127cbd92

33d6f4f110d7333d77 .

11. TODO Algorithm: http://www.twingalaxies.com/forums/viewtopic.php?t=12231 , decoded by

TwinGalaxies http://www.atariage.com/forums/index.php?showtopic=68707&st=0

Z80
1. Sean Young and Jan, “The Undocumented Z80 Documented,”

http://www.myquest.nl/z80undocumented/

2. “Decoding Z80 Opcodes,” http://www.z80.info/decoding.htm

3. “Z80 Technical Information,” http://www.tjornov.dk/spectrum/faq/tech_z80.html

4. Thomas Scherer, “Home of the Z80 CPU,” http://www.geocities.com/SiliconValley/Peaks/3938/

THE END

http://www.vecoven.com/elec/pacman/pacman.html
http://simonowen.com/sam/articles/pacemu/
http://donhodges.com/how_high_can_you_get2.htm
http://en.wikipedia.org/wiki/Pac-Man
http://www.widel.com/
http://www.mamedb.com/game/pacman
http://www.twingalaxies.com/forums/viewtopic.php?t=7224&highlight=&sid=5a5d90127cbd9233d6f4f110d7333d77
http://www.twingalaxies.com/forums/viewtopic.php?t=7224&highlight=&sid=5a5d90127cbd9233d6f4f110d7333d77
http://www.twingalaxies.com/forums/viewtopic.php?t=12231
http://www.atariage.com/forums/index.php?showtopic=68707&st=0
http://www.myquest.nl/z80undocumented/
http://www.z80.info/decoding.htm
http://www.tjornov.dk/spectrum/faq/tech_z80.html
http://www.geocities.com/SiliconValley/Peaks/3938/

	Introduction
	Z80
	Memory Map
	ROMs
	Obtaining ROMs
	Code ROMs
	Color ROM
	Palette ROM
	Tile (Character) ROM
	Sprite ROM
	Sound ROMs

	Video
	Layout
	Tiles
	Sprites

	Sound
	Waveforms
	Frequency
	Volume
	Accumulator
	Sound Enable Register
	Code

	Interrupts
	Interrupt Enable
	VBLANK
	Port 0

	Registers
	Watchdog Timer
	Flip Screen
	IN0/IN1
	Dip Switches
	Start Lamps
	Coin Lockout
	Coin Counters

	Miscellaneous
	Restart
	ROM Checksum
	Copy Protection
	Tests
	Easter Egg
	Gameplay
	Patterns

	Bugs
	Split-Screen
	Ghost pass through
	Hiding places
	Up Direction
	Fixes

	ROM Sets

	Algorithms
	Random numbers
	Ghost Movement
	Notes

	Sources
	Pac-Man
	Z80

	THE END

