From: ceriel Date: Tue, 20 Jun 1989 13:10:32 +0000 (+0000) Subject: use better algorithms for some mathematical functions X-Git-Tag: release-5-5~2366 X-Git-Url: https://git.ndcode.org/public/gitweb.cgi?a=commitdiff_plain;h=11349c78cd4080f0c99c858f4b79f9cf21e2c337;p=ack.git use better algorithms for some mathematical functions --- diff --git a/lang/m2/libm2/Mathlib.mod b/lang/m2/libm2/Mathlib.mod index 6cc3be875..c920f1ea9 100644 --- a/lang/m2/libm2/Mathlib.mod +++ b/lang/m2/libm2/Mathlib.mod @@ -17,7 +17,6 @@ IMPLEMENTATION MODULE Mathlib; CONST OneRadianInDegrees = 57.295779513082320876798155D; OneDegreeInRadians = 0.017453292519943295769237D; - Sqrt2 = 1.41421356237309504880168872420969808D; OneOverSqrt2 = 0.70710678118654752440084436210484904D; (* basic functions *) @@ -94,56 +93,68 @@ IMPLEMENTATION MODULE Mathlib; RETURN temp; END longsqrt; + PROCEDURE ldexp(x:LONGREAL; n: INTEGER): LONGREAL; + BEGIN + WHILE n >= 16 DO + x := x * 65536.0D; + n := n - 16; + END; + WHILE n > 0 DO + x := x * 2.0D; + DEC(n); + END; + WHILE n <= -16 DO + x := x / 65536.0D; + n := n + 16; + END; + WHILE n < 0 DO + x := x / 2.0D; + INC(n); + END; + RETURN x; + END ldexp; + PROCEDURE exp(x: REAL): REAL; BEGIN RETURN SHORT(longexp(LONG(x))); END exp; PROCEDURE longexp(x: LONGREAL): LONGREAL; - (* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] *) - (* Hart & Cheney #1069 *) + (* Algorithm and coefficients from: + "Software manual for the elementary functions" + by W.J. Cody and W. Waite, Prentice-Hall, 1980 + *) CONST - p0 = 0.2080384346694663001443843411D+07; - p1 = 0.3028697169744036299076048876D+05; - p2 = 0.6061485330061080841615584556D+02; - q0 = 0.6002720360238832528230907598D+07; - q1 = 0.3277251518082914423057964422D+06; - q2 = 0.1749287689093076403844945335D+04; - q3 = 0.1000000000000000000000000000D+01; + p0 = 0.25000000000000000000D+00; + p1 = 0.75753180159422776666D-02; + p2 = 0.31555192765684646356D-04; + q0 = 0.50000000000000000000D+00; + q1 = 0.56817302698551221787D-01; + q2 = 0.63121894374398503557D-03; + q3 = 0.75104028399870046114D-06; VAR neg: BOOLEAN; - xPxx, Qxx: LONGREAL; - n: LONGREAL; - n1 : INTEGER; - xsq : LONGREAL; - large: BOOLEAN; + n: INTEGER; + xn, g, x1, x2: LONGREAL; BEGIN neg := x < 0.0D; IF neg THEN x := -x; END; - x := FIF(x/longln2, 1.0D, n); - large := x > 0.5D; - IF large THEN x := x - 0.5D; END; - xsq := x*x; - xPxx := x*((p2*xsq+p1)*xsq+p0); - Qxx := ((q3*xsq+q2)*xsq+q1)*xsq+q0; - x := (Qxx + xPxx)/(Qxx - xPxx); - IF large THEN - x := x * Sqrt2; - END; - n1 := TRUNCD(n + 0.5D); - WHILE n1 >= 16 DO - x := x * 65536.0D; - n1 := n1 - 16; - END; - WHILE n1 > 0 DO - x := x * 2.0D; - DEC(n1); + n := TRUNC(x/longln2 + 0.5D); + xn := FLOATD(n); + x1 := FLOATD(TRUNCD(x)); + x2 := x - x1; + g := ((x1 - xn * 0.693359375D)+x2) - xn * (-2.1219444005469058277D-4); + IF neg THEN + g := -g; + n := -n; END; - IF neg THEN RETURN 1.0D/x; END; - RETURN x; + xn := g*g; + x := g*((p2*xn+p1)*xn+p0); + INC(n); + RETURN ldexp(0.5D + x/((((q3*xn+q2)*xn+q1)*xn+q0) - x), n); END longexp; PROCEDURE ln(x: REAL): REAL; (* natural log *) @@ -152,23 +163,21 @@ IMPLEMENTATION MODULE Mathlib; END ln; PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *) - (* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)] - Hart & Cheney #2707 - *) + (* Algorithm and coefficients from: + "Software manual for the elementary functions" + by W.J. Cody and W. Waite, Prentice-Hall, 1980 + *) CONST - p0 = 0.7504094990777122217455611007D+02; - p1 = -0.1345669115050430235318253537D+03; - p2 = 0.7413719213248602512779336470D+02; - p3 = -0.1277249755012330819984385000D+02; - p4 = 0.3327108381087686938144000000D+00; - q0 = 0.3752047495388561108727775374D+02; - q1 = -0.7979028073715004879439951583D+02; - q2 = 0.5616126132118257292058560360D+02; - q3 = -0.1450868091858082685362325000D+02; - q4 = 0.1000000000000000000000000000D+01; + p0 = -0.64124943423745581147D+02; + p1 = 0.16383943563021534222D+02; + p2 = -0.78956112887491257267D+00; + q0 = -0.76949932108494879777D+03; + q1 = 0.31203222091924532844D+03; + q2 = -0.35667977739034646171D+02; + q3 = 1.0D; VAR exp: INTEGER; - z, zsq: LONGREAL; + z, znum, zden, w: LONGREAL; BEGIN IF x <= 0.0D THEN @@ -176,15 +185,20 @@ IMPLEMENTATION MODULE Mathlib; HALT END; x := FEF(x, exp); - WHILE x < OneOverSqrt2 DO - x := x + x; + IF x > OneOverSqrt2 THEN + znum := (x - 0.5D) - 0.5D; + zden := x * 0.5D + 0.5D; + ELSE + znum := x - 0.5D; + zden := znum * 0.5D + 0.5D; DEC(exp); END; - z := (x - 1.0D) / (x + 1.0D); - zsq := z*z; - RETURN z * ((((p4*zsq+p3)*zsq+p2)*zsq+p1)*zsq+p0) / - ((((q4*zsq+q3)*zsq+q2)*zsq+q1)*zsq+q0) + - FLOATD(exp) * longln2; + z := znum / zden; + w := z * z; + x := z + z * w * (((p2*w+p1)*w+p0)/(((q3*w+q2)*w+q1)*w+q0)); + z := FLOATD(exp); + x := x + z * (-2.121944400546905827679D-4); + RETURN x + z * 0.693359375D; END longln; PROCEDURE log(x: REAL): REAL; (* log with base 10 *) @@ -204,80 +218,60 @@ IMPLEMENTATION MODULE Mathlib; RETURN SHORT(longsin(LONG(x))); END sin; - PROCEDURE sinus(x: LONGREAL; quadrant: INTEGER) : LONGREAL; - (* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] - Hart & Cheney # 3374 + PROCEDURE sinus(x: LONGREAL; cosflag: BOOLEAN) : LONGREAL; + (* Algorithm and coefficients from: + "Software manual for the elementary functions" + by W.J. Cody and W. Waite, Prentice-Hall, 1980 *) CONST - p0 = 0.4857791909822798473837058825D+10; - p1 = -0.1808816670894030772075877725D+10; - p2 = 0.1724314784722489597789244188D+09; - p3 = -0.6351331748520454245913645971D+07; - p4 = 0.1002087631419532326179108883D+06; - p5 = -0.5830988897678192576148973679D+03; - q0 = 0.3092566379840468199410228418D+10; - q1 = 0.1202384907680254190870913060D+09; - q2 = 0.2321427631602460953669856368D+07; - q3 = 0.2848331644063908832127222835D+05; - q4 = 0.2287602116741682420054505174D+03; - q5 = 0.1000000000000000000000000000D+01; - A1 = 6.2822265625D; - A2 = 0.00095874467958647692528676655900576D; + r0 = -0.16666666666666665052D+00; + r1 = 0.83333333333331650314D-02; + r2 = -0.19841269841201840457D-03; + r3 = 0.27557319210152756119D-05; + r4 = -0.25052106798274584544D-07; + r5 = 0.16058936490371589114D-09; + r6 = -0.76429178068910467734D-12; + r7 = 0.27204790957888846175D-14; + A1 = 3.1416015625D; + A2 = -8.908910206761537356617D-6; VAR - xsq, x1, x2, n : LONGREAL; - t : INTEGER; + x1, x2, y : LONGREAL; + neg : BOOLEAN; BEGIN IF x < 0.0D THEN - INC(quadrant, 2); - x := -x; - END; - IF longhalfpi - x = longhalfpi THEN - CASE quadrant OF - | 0,2: - RETURN 0.0D; - | 1: - RETURN 1.0D; - | 3: - RETURN -1.0D; - END; - END; - IF x >= longtwicepi THEN - IF x <= FLOATD(MAX(LONGINT)) THEN - (* Use extended precision to calculate reduced argument. - Split 2pi in 2 parts a1 and a2, of which the first only - uses some bits of the mantissa, so that n * a1 is - exactly representable, where n is the integer part of - x/pi. - Here we used 12 bits of the mantissa for a1. - Also split x in integer part x1 and fraction part x2. - We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2. - *) - n := FLOATD(TRUNCD(x/longtwicepi)); - x1 := FLOATD(TRUNCD(x)); - x2 := x - x1; - x := ((x1 - n * A1) + x2) - n * A2; - ELSE - x := FIF(x/longtwicepi, 1.0D, x1) * longtwicepi; - END + neg := TRUE; + x := -x + ELSE neg := FALSE END; - x := x / longhalfpi; - t := TRUNC(x); - x := x - FLOATD(t); - quadrant := (quadrant + t MOD 4) MOD 4; - IF ODD(quadrant) THEN - x := 1.0D - x; + IF cosflag THEN + neg := FALSE; + y := longhalfpi + x + ELSE + y := x END; - IF quadrant > 1 THEN - x := -x; + y := y / longpi + 0.5D; + + IF FIF(y, 1.0D, y) < 0.0D THEN ; END; + IF FIF(y, 0.5D, x1) # 0.0D THEN neg := NOT neg END; + IF cosflag THEN y := y - 0.5D END; + x2 := FIF(x, 1.0, x1); + x := x1 - y * A1; + x := x + x2; + x := x - y * A2; + + IF x < 0.0D THEN + neg := NOT neg; + x := -x END; - xsq := x * x; - RETURN x * (((((p5*xsq+p4)*xsq+p3)*xsq+p2)*xsq+p1)*xsq+p0) / - (((((q5*xsq+q4)*xsq+q3)*xsq+q2)*xsq+q1)*xsq+q0); + y := x * x; + x := x + x * y * (((((((r7*y+r6)*y+r5)*y+r4)*y+r3)*y+r2)*y+r1)*y+r0); + IF neg THEN RETURN -x END; + RETURN x; END sinus; - + PROCEDURE longsin(x: LONGREAL): LONGREAL; BEGIN - RETURN sinus(x, 0); + RETURN sinus(x, FALSE); END longsin; PROCEDURE cos(x: REAL): REAL; @@ -288,7 +282,7 @@ IMPLEMENTATION MODULE Mathlib; PROCEDURE longcos(x: LONGREAL): LONGREAL; BEGIN IF x < 0.0D THEN x := -x; END; - RETURN sinus(x, 1); + RETURN sinus(x, TRUE); END longcos; PROCEDURE tan(x: REAL): REAL; @@ -297,14 +291,49 @@ IMPLEMENTATION MODULE Mathlib; END tan; PROCEDURE longtan(x: LONGREAL): LONGREAL; - VAR cosinus: LONGREAL; - BEGIN - cosinus := longcos(x); - IF cosinus = 0.0D THEN - Message("tan: result does not exist"); - HALT - END; - RETURN longsin(x)/cosinus; + (* Algorithm and coefficients from: + "Software manual for the elementary functions" + by W.J. Cody and W. Waite, Prentice-Hall, 1980 + *) + + CONST + p1 = -0.13338350006421960681D+00; + p2 = 0.34248878235890589960D-02; + p3 = -0.17861707342254426711D-04; + + q0 = 1.0D; + q1 = -0.46671683339755294240D+00; + q2 = 0.25663832289440112864D-01; + q3 = -0.31181531907010027307D-03; + q4 = 0.49819433993786512270D-06; + + A1 = 1.57080078125D; + A2 = -4.454455103380768678308D-06; + + VAR y, x1, x2: LONGREAL; + negative: BOOLEAN; + invert: BOOLEAN; + BEGIN + negative := x < 0.0D; + y := x / longhalfpi + 0.5D; + + (* Use extended precision to calculate reduced argument. + Here we used 12 bits of the mantissa for a1. + Also split x in integer part x1 and fraction part x2. + *) + IF FIF(y, 1.0D, y) < 0.0D THEN ; END; + invert := FIF(y, 0.5D, x1) # 0.0D; + x2 := FIF(x, 1.0D, x1); + x := x1 - y * A1; + x := x + x2; + x := x - y * A2; + + y := x * x; + x := x + x * y * ((p3*y+p2)*y+p1); + y := (((q4*y+q3)*y+q2)*y+q1)*y+q0; + IF negative THEN x := -x END; + IF invert THEN RETURN -y/x END; + RETURN x/y; END longtan; PROCEDURE arcsin(x: REAL): REAL; @@ -313,24 +342,48 @@ IMPLEMENTATION MODULE Mathlib; END arcsin; PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL; - VAR + CONST + p0 = -0.27368494524164255994D+02; + p1 = 0.57208227877891731407D+02; + p2 = -0.39688862997540877339D+02; + p3 = 0.10152522233806463645D+02; + p4 = -0.69674573447350646411D+00; + + q0 = -0.16421096714498560795D+03; + q1 = 0.41714430248260412556D+03; + q2 = -0.38186303361750149284D+03; + q3 = 0.15095270841030604719D+03; + q4 = -0.23823859153670238830D+02; + q5 = 1.0D; + VAR negative : BOOLEAN; + big: BOOLEAN; + g: LONGREAL; BEGIN - negative := x <= 0.0D; + negative := x < 0.0D; IF negative THEN x := -x; END; - IF x > 1.0D THEN - Message("arcsin or arccos: argument > 1"); - HALT - END; - IF x = 1.0D THEN - x := longhalfpi; + IF x > 0.5D THEN + big := TRUE; + IF x > 1.0D THEN + Message("arcsin or arccos: argument > 1"); + HALT + END; + g := 0.5D - 0.5D * x; + x := -longsqrt(g); + x := x + x; ELSE - x := longarctan(x/longsqrt(1.0D - x*x)); + big := FALSE; + g := x * x; END; - IF negative THEN x := -x; END; - IF cosfl THEN - RETURN longhalfpi - x; + x := x + x * g * + ((((p4*g+p3)*g+p2)*g+p1)*g+p0)/(((((q5*g+q4)*g+q3)*g+q2)*g+q1)*g+q0); + IF cosfl AND NOT negative THEN x := -x END; + IF cosfl = NOT big THEN + x := (x + longquartpi) + longquartpi; + ELSIF cosfl AND negative AND big THEN + x := (x + longhalfpi) + longhalfpi; END; + IF negative AND NOT cosfl THEN x := -x END; RETURN x; END arcsincos; @@ -354,115 +407,65 @@ IMPLEMENTATION MODULE Mathlib; RETURN SHORT(longarctan(LONG(x))); END arctan; - TYPE - precomputed = RECORD - X: LONGREAL; (* partition point *) - arctan: LONGREAL; (* arctan of evaluation node *) - OneOverXn: LONGREAL; (* 1/xn *) - OneOverXnSquarePlusone: LONGREAL; (* ... *) - END; - - VAR arctaninit: BOOLEAN; - precomp : ARRAY[0..4] OF precomputed; + VAR A: ARRAY[0..3] OF LONGREAL; + arctaninit: BOOLEAN; PROCEDURE longarctan(x: LONGREAL): LONGREAL; - (* The interval [0, infinity) is treated as follows: - Define partition points Xi - X0 = 0 - X1 = tan(pi/16) - X2 = tan(3pi/16) - X3 = tan(5pi/16) - X4 = tan(7pi/16) - X5 = infinity - and evaluation nodes xi - x2 = tan(2pi/16) - x3 = tan(4pi/16) - x4 = tan(6pi/16) - x5 = infinity - An argument x in [Xn-1, Xn] is now reduced to an argument - t in [-X1, X1] by the following formulas: - - t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x) - - arctan(x) = arctan(xi) + arctan(t) - - For the interval [0, tan(p/16)] an approximation is used: - arctan(x) = x * P(x*x)/Q(x*x) + (* Algorithm and coefficients from: + "Software manual for the elementary functions" + by W.J. Cody and W. Waite, Prentice-Hall, 1980 *) - (* Hart & Cheney # 5037 *) CONST - p0 = 0.7698297257888171026986294745D+03; - p1 = 0.1557282793158363491416585283D+04; - p2 = 0.1033384651675161628243434662D+04; - p3 = 0.2485841954911840502660889866D+03; - p4 = 0.1566564964979791769948970100D+02; - q0 = 0.7698297257888171026986294911D+03; - q1 = 0.1813892701754635858982709369D+04; - q2 = 0.1484049607102276827437401170D+04; - q3 = 0.4904645326203706217748848797D+03; - q4 = 0.5593479839280348664778328000D+02; - q5 = 0.1000000000000000000000000000D+01; + p0 = -0.13688768894191926929D+02; + p1 = -0.20505855195861651981D+02; + p2 = -0.84946240351320683534D+01; + p3 = -0.83758299368150059274D+00; + q0 = 0.41066306682575781263D+02; + q1 = 0.86157349597130242515D+02; + q2 = 0.59578436142597344465D+02; + q3 = 0.15024001160028576121D+02; + q4 = 1.0D; VAR - xsqr: LONGREAL; + g: LONGREAL; neg: BOOLEAN; - i: INTEGER; + n: INTEGER; BEGIN IF NOT arctaninit THEN arctaninit := TRUE; - WITH precomp[0] DO - X := 0.19891236737965800691159762264467622D; - arctan := 0.0D; - OneOverXn := 0.0D; - OneOverXnSquarePlusone := 0.0D; - END; - WITH precomp[1] DO - X := 0.66817863791929891999775768652308076D; - arctan := 0.39269908169872415480783042290993786D; - OneOverXn := 2.41421356237309504880168872420969808D; - OneOverXnSquarePlusone := 6.82842712474619009760337744841939616D; - END; - WITH precomp[2] DO - X := 1.49660576266548901760113513494247691D; - arctan := longquartpi; - OneOverXn := 1.0; - OneOverXnSquarePlusone := 2.0; - END; - WITH precomp[3] DO - X := 5.02733949212584810451497507106407238D; - arctan := 1.17809724509617246442349126872981358D; - OneOverXn := 0.41421356237309504880168872420969808D; - OneOverXnSquarePlusone := 1.17157287525380998659662255158060384D; - END; - WITH precomp[4] DO - X := 0.0D; - arctan := longhalfpi; - OneOverXn := 0.0D; - OneOverXnSquarePlusone := 1.0D; - END; + A[0] := 0.0D; + A[1] := 0.52359877559829887307710723554658381D; (* p1/6 *) + A[2] := longhalfpi; + A[3] := 1.04719755119659774615421446109316763D; (* pi/3 *) END; neg := FALSE; IF x < 0.0D THEN neg := TRUE; x := -x; END; - i := 0; - WHILE (i <= 3) AND (x >= precomp[i].X) DO - INC(i); - END; - IF (i # 0) THEN - WITH precomp[i] DO - x := arctan + longarctan(OneOverXn-OneOverXnSquarePlusone/(OneOverXn+x)); - END + IF x > 1.0D THEN + x := 1.0D/x; + n := 2 ELSE - xsqr := x * x; - x := x * ((((p4*xsqr+p3)*xsqr+p2)*xsqr+p1)*xsqr+p0) / - (((((q5*xsqr+q4)*xsqr+q3)*xsqr+q2)*xsqr+q1)*xsqr+q0); + n := 0 + END; + IF x > 0.26794919243112270647D (* 2-sqrt(3) *) THEN + INC(n); + x := (((0.73205080756887729353D*x-0.5D)-0.5D)+x)/ + (1.73205080756887729353D + x); END; + g := x*x; + x := x + x * g * (((p3*g+p2)*g+p1)*g+p0) / ((((q4*g+q3)*g+q2)*g+q1)*g+q0); + IF n > 1 THEN x := -x END; + x := x + A[n]; IF neg THEN RETURN -x; END; RETURN x; END longarctan; (* hyperbolic functions *) + (* The C math library has better implementations for some of these, but + they depend on some properties of the floating point implementation, + and, for now, we don't want that in the Modula-2 system. + *) PROCEDURE sinh(x: REAL): REAL; BEGIN